Home
Class 11
PHYSICS
The equation of a travelling and station...

The equation of a travelling and stationary waves are `y_1=asin(omegat-kx)` and `y_2=asinkxcosomegat`. The phase difference between two points `x_1=(pi)/(4k)` and `(4pi)/(3k)` are `phi_1` and `phi_2` respectively for two waves, where `k` is the wave number. The ratio `phi_(1)//phi_(2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Equations of a stationery and a travelling waves are y_(1)=a sin kx cos omegat and y_(2)=a sin (omegat-kx) The phase differences between two between x_(1)=(pi)/(3k) and x_(2)=(3pi)/(2k) are phi_(1) and phi_(2) respectvely for the two waves. The ratio (phi_(1))/(phi_(2)) is

Equations of a stationery and a travelling waves are y_(1)=a sin kx cos omegat and y_(2)=a sin (omegat-kx) The phase differences between two between x_(1)=(pi)/(3k) and x_(2)=(3pi)/(2k) are phi_(1) and phi_(2) respectvely for the two waves. The ratio (phi_(1))/(phi_(2)) is

Two waves are given by y_(1)=asin(omegat-kx) and y_(2)=a cos(omegat-kx) . The phase difference between the two waves is -

Two waves are given by y_(1)=asin(omegat-kx) and y_(2)=a cos(omegat-kx) . The phase difference between the two waves is -

Two waves are given by y_(1)=asin(omegat-kx) and y_(2)=a cos(omegat-kx) . The phase difference between the two waves is -

Equations of a stationary and a travelling waves are as follows y_(1) = sin kx cos omega t and y_(2) = a sin ( omega t - kx) . The phase difference between two points x_(1) = pi//3k and x_(2) = 3 pi// 2k is phi_(1) in the standing wave (y_(1)) and is phi_(2) in the travelling wave (y_(2)) then ratio phi_(1)//phi_(2) is