Home
Class 12
MATHS
A circle bisects the circumference of th...

A circle bisects the circumference of the circle `x^2+ y^2 +2y -3=0` and touches the line `x= y` at the point `(1, 1)`. Its radius is

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the equation of the circle which bisects the circumference of the circle x^(2) + y^(2) + 2y - 3 = 0 and touches the straight line y = x at the origin.

If the circle x^(2)+y^(2)=4 bisects the circumference of the circle x^(2)+y^(2)-2x+6y+a=0 , then 'a' equals

If the circle x^2+y^2+4x+22y+l=0 bisects the circumference of the circle x^2+y^2-2x+8y-m=0 , then l+m is equal to

If the circle x^2+y^2+6x+8y+a=0 bisects the circumference of the circle x^2 + y^2 + 2x - 6y - b = 0 then (a + b) is equal to

Coordinates of the centre of the circle which bisects the circumferences of the circles x^2 + y^2 = 1; x^2 + y^2 + 2x - 3 = 0 and x^2 + y^2 + 2y-3 = 0 is

If the circle x^2+y^2-6x-4y+9=0 bisects the circumference of the circle x^2+y^2-8x-6y+a=0 , then the value of a is ____

If the circle x^2+y^2-6x-4y+9=0 bisects the circumference of the circle x^2+y^2-8x-6y+a=0 , then the value of a is ____

If the circle x^(2)+y^(2)-2x-2y-1=0 bisects the circumference of the circle x^(2)+y^(2)=1 then the length of the common chord of the circles is

If the circle x^2 + y^2 + 6x -2y + k = 0 bisects the circumference of the circle x^2 + y^2 + 2x- 6y-15=0 , then