Home
Class 12
MATHS
if int (x-1)^2/(x^4+x^2+1)dx=1/sqrta tan...

if `int (x-1)^2/(x^4+x^2+1)dx=1/sqrta tan^-1 ((x^2-1)/(xsqrt3))-b/sqrta tan^-1((2x^2+1)/3)+c` then `a^2+b^2` is

Promotional Banner

Similar Questions

Explore conceptually related problems

int ((x^2 -1)dx)/((x^4 + 3x^2 + 1) tan^-1((x^2 + 1)/x)) = k logabs(tan^-1((x^2 +1)/x)) + c

int((x^(2)-1)dx)/((x^(4)+3x^(2)+1)Tan^(-1)((x^(2)+1)/(x)))=

int(x^(2)-1)/((x^(4)+3x^(2)+1)tan^(-1)(x+(1)/(x)))dx=

int(1+tan^2x)/(1-tan^2x)dx=

If int(1)/((x^2+1)(x^2+4))dx=a tan^(-1). x+b tan^(-1).(x)/(2)+c , then :

If int((x^(2)-1)dx)/((x^(4)+3x^(2)+1)Tan^(-1)((x^(2)+1)/(x)))=klog|tan^(-1)""(x^(2)+1)/x|+c , then k is equal to

If int((x^(2)-1)dx)/((x^(4)+3x^(2)+1)Tan^(-1)((x^(2)+1)/(x)))=klog|tan^(-1)""(x^(2)+1)/x|+c , then k is equal to

int (1-tan^2x)/(1+tan^2x) dx

int (1-tan^2x)/(1+tan^2x) dx