Home
Class 12
MATHS
Letf(x)=sinx,g(x)=x^(2) and h(x)=log(e)x...

Let`f(x)=sinx,g(x)=x^(2)` and `h(x)=log_(e)x.`
If `F(x)=("hog of ")(x)," then "F''(x)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=sinx,g(x)=x^2 and h(x) = log x. If F(x)=(h(f(g(x)))) , then F'(x) is:

If f(x)=sinx, g(x)=x^2 and h(x)=log x, find h[g{f(x)}].

If f(x)=sinx,g(x)=x^(2)andh(x)=logx. IF F(x)=h(f(g(x))), then F'(x) is

If f(x)=sinx,g(x)=x^(2)andh(x)=logx. IF F(x)=h(f(g(x))), then F'(x) is

If f(x)=sinx,g(x)=x^(2)andh(x)=logx. IF F(x)=h(f(g(x))), then F'(x) is

If f(x)=sinx,g(x)=x^(2)andh(x)=logx. IF F(x)=h(f(g(x))), then F'(x) is

f(x)=log_(e)|x|,xne0, then f'(x) is equal to

If f(x)=(log)_x(logx) , then f'(x) at x=e is equal to......