Home
Class 11
MATHS
" Number of integral values of "x" satis...

" Number of integral values of "x" satisfying the inequality "((3)/(4))^(6x+10-x^(2))<(27)/(64)

Promotional Banner

Similar Questions

Explore conceptually related problems

If number of integral values of x satisfying the inequality ((x)/(100))^(7logx-log^(2)x-6)ge10^(12) are alpha then

If number of integral values of x satisfying the inequality ((x)/(100))^(7logx-log^(2)x-6)le10^(12) are alpha then

" The number of integral values of "'x'" satisfying the inequality "(1)/((x^(2)+x))<=(1)/((2x^(2)+2x+3))" is/are "

Sum of integral values of x satisfying the inequality 3((5)/(2))log_(3)(12-3x)

Number of integral values of x satisfying the inequality (x^(2)(x+1)(x^(2)-1)(x+2))/(x^(2)-2x-3)<=0

Number of integral values of x satisfying the inequality ((e^(x)-pi^(x))log_(2)((x^(2)-5x+6)/(2))(x-8)^(31)(x-5)^(5))/((x+2)^(3)(x^(8)-x^(6)+x^(4)-x^(2)+1))ge0 is/are

Number of integral values of x which satisfy the inequality log_(x+(1)/(x))(1+5x-x^(2))>0, is :

Number of integral values of x satisfying ||x-4|+2<5 are

Find the number of positive integral value of x satisfying the inequality ((3^(x)-5^(x))(x-2))/((x^(2)+5x+2))ge0