Home
Class 12
MATHS
lim(x->0)|x(x-1)|^[cos2x] ; where [.] is...

` lim_(x->0)|x(x-1)|^[cos2x]` ; where [.] is GIF is equal to : A.) 1 B.) 0 C.) e D.) does not exist

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(x rarr 0)(ln x^(n)-[x])/([x]) is equal to . [where [x] is greatest integer less than or equal to x ] (A) -1 (B) 0 (C) 1 (D) does not exist

(lim)_(x->oo)(sinx)/x equals a. 1 b . 0 c. oo d. does not exist

If A=lim_(x->0)sin^(-1)(sinx)/(cos^(-1)(cosx)) and B=lim_(x->0)[|x|]/x then (where [.] denotes greatest integer function)(A) A=1 (B) A does not exist (C) B = 0 (D) B=1

If A=lim_(x->0)sin^(-1)(sinx)/(cos^(-1)(cosx)) and B=lim_(x->0)[|x|]/x then (where [.] denotes greatest integer function)(A) A=1 (B) A does not exist (C) B = 0 (D) B=1

("lim")_(x->1)[cos e c(pix)/2]^(1/((1-x))) (w h e r e [dot] represents the GIF ) is equal to (a) 0 (b) 1 (c) oo (d) does not exist

lim_(x rarr0)(sin[cos x])/(1+cos[cos x]) is,where [.] is GIF

Show that Lim_(x to 0 ) e^(-1//x) does not exist .

if f(x)={{:(2+x,xge0),(2-x,xlt0):} then lim_(x to 0) f(f(x)) is equal to (A) 0 (B) 4 (C) 2 (D) does not exist

("lim")_(xrarroo)(1/e-x/(1+x))^x is equal to (a) e/(1-e) (b) 0 (c) e/(e^(1-e)) (d) does not exist

("lim")_(xrarroo)(1/e-x/(1+x))^x is equal to (a) e/(1-e) (b) 0 (c) e/(e^(1-e)) (d) does not exist