Home
Class 12
MATHS
15*log(sqrt(x)+(1)/(sqrt(x)))...

15*log(sqrt(x)+(1)/(sqrt(x)))

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=log(sqrt(x)+(1)/(sqrt(x))). Prove that (dy)/(dx)=(x-1)/(2x(x+1))

If y=log(sqrt(x)+(1)/(sqrt(x))), prove that (dy)/(dx)=(x-1)/(2x(x+1))

logs(sqrt(x)+1/sqrt(x))

(d)/(dx) { log ((sqrt(x+1) -1)/(sqrt(x + 1 ) +1 )) + ( sqrtx)/(sqrt( x +1))}=

y=log((sqrt(x+1)+1]/(sqrt(x+1)-1))

int ((log(1+6sqrt(x)))/(3sqrt(x)+sqrt(x))+(1)/(3sqrt(x)+4sqrt(x)))dx

Find x if log_(1//sqrt(2)) (1//sqrt(8)) = log_(2)(4^(x) +1). Log(4^(x+1) +4) ,

int((sqrt(x))^(5)dx)/((sqrt(x))^(7)+x^(6))=lambda log((x^(a))/(x^(a)+1))+c, then

int_(1)^(7)(log sqrt(x))/(log sqrt(8-x)+log sqrt(x))dx=

int_(1)^(7)(log sqrt(x))/(log sqrt(8-x)+log sqrt(x))dx=