Home
Class 11
MATHS
lim(x rarr0)[(int(0)^(x)sin^(2)t cos tdt...

lim_(x rarr0)[(int_(0)^(x)sin^(2)t cos tdt)/(x^(3))]=

Promotional Banner

Similar Questions

Explore conceptually related problems

{:(" "Lt),(x rarr 0):} (int_(0)^(x) sin^(2)t cost dt)/(x^(3))=

Evaluate :lim_(x rarr0)(int_(0)^(x^(2))sin sqrt(t)dt)/(x^(3))

Lt_(x rarr0)((int_(0)^(x)tan^(2)t sec^(2)tdt)/(x^(3)))=

lim_(x rarr0)[sin x]

Lim_(x rarr0)int_(0)^(x)(sin^(2)u du)/(sin x)

lim_ (x rarr0) (int_ (0) ^ (x) cos tdt) / (x) =

lim_(x rarr0)((int_(0)^(x)(sin^(3)xdx))/(x^(4)))

The value of lim_(x rarr0)(int_(0)^(x^(2))sin sqrt(x)dx)/(x^(3)) is

Lt_ (x rarr0) ((int_ (0) ^ (x) sin ^ (3) t cos tdt) / (x ^ (4)))