Home
Class 10
MATHS
" Find the value of "int(0)^(4)|(1-x)|*d...

" Find the value of "int_(0)^(4)|(1-x)|*dx

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of int_(0)^(1)x(1-x)^(n)dx

Find the value of int_(0)^(1)x^(2)dx

The value of int_(0)^(4)|x-1|dx is

Find the value of int_(0)^(1)(x^(4)(1-x)^(4))/(1+x^(2))dx

Evaluate: int_(-1)^(4)f(x)dx=4 and int_(2)^(4)(3-f(x))dx=7 then find the value of int_(2)^(-1)f(x)dx

Find the value of int(dx)/(x^(4)-1)

Prove that int_0^1log(x/(1-x))dx=int_0^1log((1-x)/x)dx . Find the value of int_0^1log(x/(1-x))dx

Find the value of (29int_(0)^(1)(1-x^(4))^(7)dx)/(4int_(0)^(1)(1-x^(4))^(6))dx

Prove that int_(0)^(1)log((x)/(x-1))dx=int_(0)^(1)log((x-1)/(x))dx . Find the value of int_(0)^(1)log((x)/(x-1))dx

Find the value of int_0^1x(1-x)dx