Home
Class 12
MATHS
if y={log(cosx)sinx}{log(sinx)cosx}^-1 +...

if `y={log_(cosx)sinx}{log_(sinx)cosx}^-1 + sin^(-1)(2x/(1+x^2))` then find `dy/dx=?`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y={(log)_(cosx)sinx}{(log)_(sinx)cosx}^(-1)+sin^(-1)((2x)/(1+x^2)), find (dy)/(dx)a tx=pi/4

If y={(log)_(cosx)sinx}{(log)_(sinx)cosx}^(-1)+sin^(-1)((2x)/(1+x^2)), fin d (dy)/(dx)a tx=pi/4

If y={(log)_(cosx)sinx}{(log)_(sinx)cosx}^(-1)+sin^(-1)((2x)/(1+x^2)), fin d (dy)/(dx)a tx=pi/4

If y={(log)_(cosx)sinx}{(log)_(sinx)cosx}^(-1)+sin^(-1)((2x)/(1+x^2)), fin d (dy)/(dx)a tx=pi/4

If y={(log)_(cosx)sinx}{(log)_(sinx)cosx}^(-1)+sin^(-1)((2x)/(1+x^2)), fin d (dy)/(dx)a tx=pi/4

If y={log_(cosx)sinx}"{"log_(sinx)cosx")"^(-1)+sin^(-1)((2x)/(1+x^2)), find (dy)/(dx)a tx=pi/4dot

If y = (log_(cosx) sin x)(log_(sinx) cosx)^-1 + sin^-1((2x)/(1+x^2)) , find dy/dx at x = pi/4

If y=(log_(cosx)sinx)(log_(sinx)cosx)+"sin"""^(-1)(2x)/(1+x^(2)) , then (dy)/(dx) at x=(pi)/(2) is equal to

If y=(log_(cosx)sinx)(log_(sinx)cosx)+"sin"""^(-1)(2x)/(1+x^(2)) , then (dy)/(dx) at x=(pi)/(2) is equal to

If y=((log)_(cosx)sinx)((log)_(sinx)cosx)+sin^(-1)(2x)/(1+x^2) , then (dy)/(dx) at x=pi/2 is equal to.......