Home
Class 12
MATHS
I(n)=int(1)^(e)(log(e)x)^(n)dxquad " and...

I_(n)=int_(1)^(e)(log_(e)x)^(n)dxquad " and "I_(n)=A+BI_(n-1)." Then "(A,B)=

Promotional Banner

Similar Questions

Explore conceptually related problems

I_(n)=int_(1)^(e)(log)^(n)dx and I_(n)=A+BI_(n+1) then A&B=

If I_(n)=int_(1)^(e)(log x)^(n)dx then I_(8)+8I_(7)=

If I_(n)= int_(1)^(e) (log x)^(n) dx then I_(8) + 8I_(7)=

If I_(n)=int_(1)^(e)(log x)^(n) d x, then I_(n)+nI_(n-1) equal to

If = int_(1)^(e) (logx)^(n) dx, "then"I_(n)+nI_(n-1) is equal to

If = int_(1)^(e) (logx)^(n) dx, "then"I_(n)+nI_(n-1) is equal to

I_(m, n)= int_(0)^(1) x^(m) (ln x)^(n) dx=

If I_(n)=int_(1)^(e)(log_(e)x)^(n)dx(n is a positive number),I_(2012)+(2012)I_(2011)=

If I_(n)= int (log x)^(n)dx then I_(n)+nI_(n-1)=