Home
Class 11
MATHS
" If "f(9)=9,f'(9)=4," then "lim(x rarr9...

" If "f(9)=9,f'(9)=4," then "lim_(x rarr9)(sqrt(f(x))-3)/(sqrt(x)-3)

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0)(sqrt(x+4)-2)/(sqrt(x+9)-3)

If f(9) =9, f^(')(9) = 4 , then lim_(x rarr 9)(sqrt(f(x))-3)/(sqrtx - 3) =

If f(9)=9 and f'(9)=4 then lim_(x to 9)(sqrt(f(x))-3)/(sqrt(x)-3) is equal to -

If f(9)=9 and f'(9)=1 then lim_(x rarr 9) (3-sqrt(f(x)))/(3-sqrtx)

lim_(x rarr9)(3-sqrt(x))/(4-sqrt(2x-2))

If f (9) = 9, f '(9) = 1, then lim_(x rarr 9) (8-sqrt(f(x)))/(3-sqrtx) =

If f be a function such that f(9)=9 and f'(9)=3 , then lim_(xto9)(sqrt(f(x))-3)/(sqrt(x)-3) is equal to

If f be a function such that f(9)=9 and f'(9)=3 , then lim_(xto9)(sqrt(f(x))-3)/(sqrt(x)-3) is equal to