Home
Class 11
MATHS
[" If "alpha,beta" are solution of "sin^...

[" If "alpha,beta" are solution of "sin^(2)x+a sin x+b=0],[" and "cos^(2)x+c cos x+d=0(a-beta!=n pi)" then "],[sin(alpha+beta)" equals "]

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha and beta are solutions of sin^(2)x+a sin x+b=0 as well as that of cos^(2)x+c cos x+d=0 then sin(alpha+beta) is equal to

If alpha and beta are solutions of sin^2 x + a sin x+b=0 as well as that of cos^2x + c cosx + d =0 then sin(alpha + beta) is equal to

If alpha, beta are solutions of a cos x + b sin x = c then cos alpha + cos beta=

If alpha and beta are solutions of sin^2x+asinx+b=0 as well as of cos^2x+c cosx+d=0 then sin(alpha+beta) is equal to

If alpha, beta are solutions of a cos x + b sin x = c then sin alpha + sin beta =

alpha & beta are solutions of a cos theta+b sin theta=c(cosalpha != cos beta)&(sin alpha != sin beta) Then tan((alpha+beta)/2)=?

If alpha, beta are solutions of a cos theta + b sin theta = c where a, b, c in R and a^(2) + b^(2) gt 0, cos alpha ne cos beta, sin alpha ne sin beta then prove that sin alpha sin beta = (c^(2)-a^(2))/(a^(2) + b^(2))

If alpha, beta are solutions of a cos theta + b sin theta = c where a, b, c in R and a^(2) + b^(2) gt 0, cos alpha ne cos beta, sin alpha ne sin beta then prove that sin alpha + sin beta = (2bc)/(a^(2) + b^(2))

If alpha, beta are solutions of a cos theta + b sin theta = c where a, b, c in R and a^(2) + b^(2) gt 0, cos alpha ne cos beta, sin alpha ne sin beta then prove that cos alpha cos beta = (c^(2) - b^(2))/(a^(2) + b^(2))