Home
Class 12
MATHS
(" (i) "[" show that the vector "vec a" ...

(" (i) "[" show that the vector "vec a" is perpendicular to the vecto "],[vec b-(vec a*vec b)/(|vec a|^(2))vec a]

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that the vector vec(a) is perpendicular to the vector vec(b) - (vec(a).vec(b))/(|vec(a)|^(2))vec(a)

Show that |vec a|vec b+|vec b|vec a is a perpendicular to |vec a|vec b-|vec b|vec a+|vec a ,for any two non-zero vectors vec a and vec b

If vec a and vec b be perpendicular vectors, then prove that (vec a + vec b)^(2) = (vec a - vec b)^(2) .

If vec a,vec b,vec c are mutually perpendicular unit vectors,find |2vec a+vec b+vec c|

Show that the projection vector of vec(b) on vec(a) , a ne 0 is ((vec(a).vec(b))/(|vec(a)|^(2)))vec(a) .

If vec a and vec b are two vectors such that vec a + vec b is perpendicular to vec a - vec b ,then prove that |vec a| = |vec b| .

Show that | vec a | vec b + | vec b | vec a is perpendicular to | vec a | vec b- | vec b | vec a for any two nonzero vectors vec a and vec b

Show that |vec a| vec b + |vec b| vec a , is perpendicular to |vec a| vec b - |vec b| vec a , for any two non-zero vectors vec a and vec b .

Show that | vec a| vec b+| vec b| vec a is a perpendicular to | vec a| vec b-| vec b| vec a , for any two non-zero vectors vec aa n d vec bdot

Show that | vec a| vec b+| vec b| vec a is a perpendicular to | vec a| vec b-| vec b| vec a , for any two non-zero vectors vec aa n d vec bdot