Home
Class 12
MATHS
|[xy, xz, x^2+1] , [y^2+!, yz, xy] , [yz...

`|[xy, xz, x^2+1] , [y^2+!, yz, xy] , [yz, z^2+1, xz]|= 1+x^2+y^2+z^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

xy,xz,x^(2)+1y^(2)+!,yz,xyyz,z^(2)+1,xz]|=1+x^(2)+y^(2)+z^(2)

x ^(2) - xz + xy - yz =?

Prove that |{:(x^2+1,xy,xz),(xy,y^2+1,yz),(xz,yz,z^2+1):}|=1+x^2+y^2+z^2

What is the LCM of (x^2 - y^2 – z^2 – 2yz),(x^2 - y^2 + z^2 + 2xz) and (x^2 + y^2 - z^2 - 2xy) ?

Show that: |[(y+z)^2, xy, zx],[xy, (x+z)^2, yz], [xz, yz, (x+y)^2]|=2xyz(x+y+z)^3

Using Properties of determinants, prove that: {:|(x^2+1,xy,yz),(xy,y^2+1,yz),(xz,yz,z^2+1)|=1+x^2+y^2+z^2

Using properties of determinants , prove that |(x^2+1,xy,zx),(xy,y^2+1,yz),(zx,yz,z^2+1)|=1+x^2+y^2+z^2

Using properties of determinant show that : |(-x^2,xy,xz),(xy,-y^2,yz),(xz,yz,-z^2)|=4x^2y^2z^2

|[1/x,1/y,1/z],[x^(2),y^(2),z^(2)],[yz,zx,xy]|

xquad x ^ (2), y2yquad y ^ (2), 2xz, z ^ (2), xy] | = (xy) (yz) (zx) (xy + yz + 2x)