Home
Class 12
MATHS
If f(x)=ax when a<1 and f(x)= ax^2+bx+2 ...

If `f(x)=ax `when `a<1` and `f(x)= ax^2+bx+2` when `a >= 1` then the values of `a` and `b` for which `f(x)` is differentiable are

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=ax when x = 1 then the values of a and b for which f(x) is differentiable are

Find the values of aandb if f(x)={ax^(2)+1,x 1 is differentiable at x=1

Let f(x)=(ax)/(x+1), x ne1 , then the value of 'a' for which f[f(x)]=x is

f(x)={(1/absx,,absx ge1 ),(ax^2+b,,absxlt1):} Find the possible value of a and b given that f(x) is differentiable at x=1

If f(x)=x+1 , then write the value of d/(dx)(fof)(x) .

If f(x)=(ax-b)/(bx-a) , then find the value of f(1/x) .

If f(x)=x+1, then write the value of (d)/(dx)(fof)(x)

If f(x)={3ax+b if x>1, 11 if x=1 , 5ax-2b,if x<1.Determinethe values of a and b so that f(x) is continuous.

If f(x)=ax^(2)+bx+c and f(x+1)=f(x)+x+1 , then the value of (a+b) is __

If f(x)=|x|+|x-1| , write the value of d/(dx)(f(x)) .