Home
Class 12
MATHS
Statement I : sin^2pi/8+sin^2(3pi)/8+sin...

Statement I : `sin^2pi/8+sin^2(3pi)/8+sin^2(5pi)/8+sin^2(7pi)/8=2` Statement II `cos^2pi/8+cos^2(3pi)/8+cos^2(5pi)/8+cos^2(7pi/8)=2` Statement III: `sin^2pi/8+sin^(3pi)/8+sin^2(5pi)/8sin^2(7pi)/8=3/2`

Text Solution

Verified by Experts

`L.H.S. = sin^4((pi)/8)+sin^4((3pi)/8)+sin^4((5pi)/8)+sin^4((7pi)/8)`
`=sin^4((pi)/8)+sin^4((3pi)/8)+sin^4(pi-(3pi)/8)+sin^4(pi-(pi)/8)`
`=sin^4((pi)/8)+sin^4((3pi)/8)+sin^4((3pi)/8)+sin^4((pi)/8)...[As sin(pi-theta) = sintheta]`
`=2(sin^4((pi)/8)+sin^4((3pi)/8))`
`=2((sin^2((pi)/8))^2+(sin^2((3pi)/8))^2)`
`=2(((1-cos(pi/4))/2)^2+((1-cos((3pi)/4))/2)^2)`
`=2/4[(1-1/sqrt2)^2+(1+1/sqrt2)^2]`
`=1/2[1+1/2-sqrt2+1+1/2+sqrt2]`
...
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

cos^2 pi/8 +cos^2 (3pi)/8 +cos^2 (5pi)/8 +cos^2 (7pi)/8 =

Statement I : sin^2pi/8+sin^2(3pi)/8+sin^2(5pi)/8+sin^2(7pi)/8=2 Statement II sin^4pi/8+sin^4 (3pi)/8+sin^4(5pi)/8sin^4(7pi)/8=3/2

Show that: sin^2 pi/8 + sin^2 (3pi)/8+sin^2 (5pi)/8+sin^2 (7pi)/8=2

Prove cos^2(pi/8)+cos^2(3pi/8)+cos^2(5pi/8)+cos^2(7pi/8)=2

cos^2(pi/8) +cos^2((3pi)/8) +cos^2((5pi)/8)+cos^2 ((7pi)/8)=2

Evaluate cos^2(pi/8)+cos^2((3pi)/8)+cos^2((5pi)/8)+cos^2((7pi)/8)=2

Prove that sin^2(pi/8)+sin^2(3pi/8)+sin^2(5pi/8)+sin^2(7pi/8)=2

Evaluate : cos^2(pi/8)+cos^2((3pi)/8)+cos^2((5pi)/8)+cos^2((7pi)/8)

Prove that sin^2(pi/8)+sin^2((3pi)/8)+sin^2((5pi)/8)+sin^2((7pi)/8)=2

Prove that: sin^2(pi/8)+sin^2((3pi)/8)+sin^2((5pi)/8)+sin^2((7pi)/8)=2