Home
Class 10
MATHS
if cottheta+ tantheta = x and sectheta- ...

if cot`theta`+ tan`theta` = x and sec`theta`- cos`theta` = y , prove that `(x^2y)^(2/3)- (xy^2)^(2/3) = 1`

Promotional Banner

Similar Questions

Explore conceptually related problems

If cot theta + tan theta = x and sec theta - cos theta = y then

If cot theta+tan theta=x and sec theta-cos theta=y prove that (x^(2)y)^((2)/(3))-(xy^(2))^((2)/(3))=1

If x=cosec theta-sin theta and y=sec theta-cos theta then prove that x^(2/3)+y^(2/3)=(xy)^(-2/3)

If x= cosec theta -sin theta and y=sec theta-cos theta, then show that x^(2//3)+y^(2//3)=(xy)^(-2//3)

If x = sin theta + cos theta sin 2 theta " and " y = cos theta + sin theta sin 2 theta,"prove that " (x+y)^(2//3) + (x-y)^(2//3) = 2

If 2cos theta-sin theta=x and cos theta-3sin theta=y Prove that 2x^(2)+y^(2)-2xy=5

If x=sec theta-tan theta and y=cos ec theta+cot theta then prove that xy+1=y-x

If x=a sec theta,y=b tan theta, then prove that (x^(2))/(a^(2))-(y^(2))/(b^(2))=1