Home
Class 11
MATHS
The value(s) of x satisfying the equatio...

The value(s) of x satisfying the equation `log_2 x + 2log_2 x - log_2 (x - 1) = 3`, is

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of x satisfying the equation 2log_(3)x+8=3.x log_(9)4

The value of x satisfying the equation 2log_(10)x - log_(10) (2x-75) = 2 is

The value of x satisfying the equation 2log_(10)x - log_(10) (2x-75) = 2 is

Number of real values of x satisfying the equation log_2(x^2-x)*log_2((x-1)/x)+(log_2x)^2=4 ,is (a) 0 (b) 2 (c) 3 (d) 7

Number of real values of x satisfying the equation log_2(x^2-x)*log_2((x-1)/x)+(log_2x)^2=4 ,is (a) 0 (b) 2 (c) 3 (d) 7

Number of real values of x satisfying the equation log_2(x^2-x)*log_2((x-1)/x)+(log_2x)^2=4 ,is (a) 0 (b) 2 (c) 3 (d) 7

The values of x, satisfying the equation for AA a > 0, 2log_(x) a + log_(ax) a +3log_(a^2 x)a=0 are

The values of x, satisfying the equation for AA a > 0, 2log_(x) a + log_(ax) a +3log_(a^2 x)a=0 are

The values of x, satisfying the equation for AA a > 0, 2log_(x) a + log_(ax) a +3log_(a^2 x)a=0 are

The values of x, satisfying the equation for AA a > 0, 2log_(x) a + log_(ax) a +3log_(a^2 x)a=0 are