Home
Class 12
MATHS
x=acos^(3)theta,y=asin^(3)theta then fin...

`x=acos^(3)theta,y=asin^(3)theta` then find `(d^(2)y)/(dx^(2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x = acos^(3)theta , y = a sin^(3)theta ,then find (d^2y)/dx^(2)

If x=asec^(3)theta,y=atan^(3)theta then find (d^(2)y)/(dx^(2)) at theta=pi/4 .

If x=acos^3theta,y=a sin^3theta then find (d^2y)/(dx^(2))

If x=acos^3theta,y=a sin^3theta then find (d^2y)/(dx^(2))

If x=acos^(3)theta" and "y=bsin^(3)theta , then find (d^(2)y)/(dx^(2)) at theta=(pi)/(4).

If x =a cos ^(3) theta, y= a sin ^(3) theta then (d^(2) y)/( dx ^(2)) at theta = pi //4 is

If x = a cos^(3)(Theta), y = a sin^(3)(Theta) find (d^(2)y)/(dx^(2)) .

If x=a sec^(3)theta,y=atan^(3)theta, find (d^(2)y)/(dx^(2)) at theta=(pi)/(4)

If x=acos^(3)theta and y=asin^(3)theta , then (dy)/(dx)=

If x=bcos^(3)theta,y=asin^(3)theta," then "(dy)/(dx)=