Home
Class 12
MATHS
The integral (sec^2x)/ (sec x+ tan x)^(9...

The integral `(sec^2x)/ (sec x+ tan x)^(9/2)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

The integral (sec^(2)x)/((sec x+tan x)^((9)/(2))) is equal to

The integral int (sec^(2) x)/((sec x+tan x)^(9//2))dx equals : (for some arbitrary constant k)

The integral int(sec^2x)/(3+4tan x)dx

The integral int(sec^(2)x)/((sec x+tan x)^((9)/(2)))dx equals (for some arbitrary constant K)-(1)/((sec x+tan x)^((11)/(2))){(1)/(11)-(1)/(7)(sec x+tan x)^(2)}+K(1)/((sec x+tan x)^((11)/(2))){(1)/(11)-(1)/(7)(sec x+tan x)^(2)}+K-(1)/((sec x+tan x)^((11)/(2))){(1)/(11)+(1)/(7)(sec x+tan x)^(2)}+K

int (sec^(2)x)/((sec x+ tan x)^(5))dx=

int(sec^(2)x)/((sec x+tan x)^((9)/(2)))dx

int(sec x)/((sec x+tan x)^(2))dx

sqrt((sec x-tan x)/(sec x+tan x)) is equal to

Integrate: int (secx dx)/(sec x + tan x)

integrate ∫x sec^2x dx