Home
Class 12
MATHS
If y=1+x/(1!)+(x^2)/(2!)+(x^3)/(3!)++(x^...

If `y=1+x/(1!)+(x^2)/(2!)+(x^3)/(3!)++(x^n)/(n !),` show that `(dy)/(dx)-y+(x^n)/(n !)=0.`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find by the definition the differential coefficient of the following: y=1+x/(1!)+x^2/(2!)+x^3/(3!)+……+x^n/(n!) show that dy/dx-y+x^n/(n!)=0

If y=1+(x)/(1!)+(x^(2))/(2!)+(x^(3))/(3!)+ . . .+(x^(n))/(n!) , prove that (dy)/(dx)+(x^(n))/(n!)=y

If y=1+x+(x^(2))/(2!)+(x^(3))/(3!)+....+(x^(n))/(n!) , then show that (dy)/(dx)+(x^(n))/(n!)=y

If y = 1 +x +(x^2)/(2!)+x^3/(3!)+....+ x^n(n!) then (dy)/(dx) is equal to

If y=1+x+(x^(2))/(2!)+(x^(2))/(3!)+……+(x^(n))/(n!) then (dy)/(dx) =…………

If y = 1 + x + (x^(2))/(2!)+(x^(3))/(3!)+(x^(4))/(4!)+* * * +(x^(n))/(n!) prove that (dy)/(dx) + (x^(n))/(n!)=y*

If x^(m)*y^(n)=(x+y)^(m+n), show that (dy)/(dx)=(y)/(x)

If y=1+x+(x^2)/(2!)+(x^3)/(3!)+...+(x^n)/(n !),t h e n(dy)/(dx) is equal to (a) y (b) y+(x^n)/(n !) (c) y-(x^n)/(n !) (d) y-1-(x^n)/(n !)

If y=1+x+(x^2)/(2!)+(x^3)/(3!)+...+(x^n)/(n !),t h e n(dy)/(dx) is equal to (a) y (b) y+(x^n)/(n !) (c) y-(x^n)/(n !) (d) y-1-(x^n)/(n !)

If y=1+x+(x^2)/(2!)+(x^3)/(3!)+...+(x^n)/(n !),t h e n(dy)/(dx) is equal to (a) y (b) y+(x^n)/(n !) (c) y-(x^n)/(n !) (d) y-1-(x^n)/(n !)