Home
Class 11
MATHS
if a+ib=(u+i)^2/(2u-i) then prove that a...

if `a+ib=(u+i)^2/(2u-i)` then prove that `a^2+b^2=(u^2+1)^2/(4u^2+1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If u = (x^2+y^2+z^2)^(-1/2) then prove that (del^2u)/(delx^2)+(del^2u)/(dely^2)+(del^2u)/(delz^2) =0

If a + ib = sqrt((u + iv)/(x + iy)) then the value of a^2 + b^2 is:

If u_n=sin^("n")theta+cos^ntheta, then prove that (u_4-u_6)/(u_2-u_4)=1/2 .

If u = log ((x ^ (2) + y ^ (2)) / (x + y)), prove that x (u) / (x) + y (u) / (y) = 1

If U_(n)=(sqrt(3)+1)^(2n)+(sqrt(3)-1)^(2n), then prove that U_(n+1)=8U_(n)-4U_(n-1)

Find the points of discontinuity of y = (1)/(u^(2) + u -2) , where u = (1)/(x -1)

Find the points of discontinuity of y = (1)/(u^(2) + u -2) , where u = (1)/(x -1)

Find the points of discontinuity of y = (1)/(u^(2) + u -2) , where u = (1)/(x -1)