Home
Class 12
MATHS
int sqrt(1+ sin2x) dx (A) cosx+...

`int sqrt(1+ sin2x) dx` (A) `cosx+sinx+C` (B) `cosx-sinx+C` (C) `-cosx+sinx+C` (D) `-cosx-sinx+C`

Promotional Banner

Similar Questions

Explore conceptually related problems

int(cosx+sinx)/sqrt(sin2x)dx= (A) sin^-1(cosx+sinx) (B) sin^-1(sinx-cosx) (C) cos^-1(cosx+sinx) (D) none of these

(d)/(dx)((cosx+sinx)/(cosx-sinx))=

The value of int(sinx+cosx)/(sqrt(1-sin2x))\ dx is equal to (a) sqrt(sin2x)+C (b) sqrt(cos2x)+C (c) +-(sinx-cosx)+C (d) +-log(sinx-cosx)+C

If f(x)=sqrt(1-sin2x) , then f^(prime)(x) is equal to (a) -(cosx+sinx) ,for x in (pi/4,pi/2) (b) cosx+sinx ,for x in (0,pi/4) (c) -(cosx+sinx) ,for x in (0,pi/4) (d) cosx-sinx ,for x in (pi/4,pi/2)

If f(x)=sqrt(1-sin2x) , then f^(prime)(x) is equal to (a) -(cosx+sinx) ,for x in (pi/4,pi/2) (b) cosx+sinx ,for x in (0,pi/4) (c) -(cosx+sinx) ,for x in (0,pi/4) (d) cosx-sinx ,for x in (pi/4,pi/2)

int((2cosx-3sinx)/(3cosx+2sinx))dx

If f(x)=sqrt(1-sin2x) , then f^(prime)(x) is equal to (a) -(cosx+sinx),forx in (pi/4,pi/2) (b) cosx+sinx ,forx in (0,pi/4) (c) -(cosx+sinx),forx in (0,pi/4) (d) cosx-sinx ,forx in (pi/4,pi/2)

int_0^(pi/2) (cosx-sinx)/(1+sinx cosx) dx =

int(dx)/(cosx-sinx)=...+c

intx^(sinx) ((sinx)/x+cosxdotlogx) dx is equal to (A) x^(sinx)+C (B) x^(sinx)cosx+C (C) ((x^(sinx))^2)/2+C (D) none of these