Home
Class 11
MATHS
A, B, C are the point representing the c...

A, B, C are the point representing the complex numbers `z_1,z_2,z_3` respectively on the complex plane and the circumcentre of the triangle ABC lies at the origin. If the altitude of the triangle through the vertex A meets the circumcircel again at P, then prove that P represents the complex number `-(z_2z_3)/(z_1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

A,B and C are the points respectively the complex numbers z_(1),z_(2) and z_(3) respectivley, on the complex plane and the circumcentre of /_\ABC lies at the origin. If the altitude of the triangle through the vertex. A meets the circumcircle again at P, prove that P represents the complex number (-(z_(2)z_(3))/(z_(1))) .

A,B and C are the points respectively the complex numbers z_(1),z_(2) and z_(3) respectivley, on the complex plane and the circumcentre of /_\ABC lies at the origin. If the altitude of the triangle through the vertex. A meets the circumcircle again at P, prove that P represents the complex number (-(z_(2)z_(3))/(z_(1))) .

A,B and C are the points respectively the complex numbers z_(1),z_(2) and z_(3) respectivley, on the complex plane and the circumcentre of /_\ABC lies at the origin. If the altitude of the triangle through the vertex. A meets the circumcircle again at P, prove that P represents the complex number (-(z_(2)z_(3))/(z_(1))) .

A, B, C are the points representing the complex numbers z_1, z_2, z_3 respectively on the complex plane and the circumcentre of the triangle ABC lies at the origin. If the altitude AD of the triangle ABC meets the circumcircle again at P, then P represents the complex number

Let A, B, C represent the complex numbers z_1, z_2, z_3 respectively on the complex plane. If the circumcentre of the triangle ABC lies at the origin, then the orthocentre is represented by the complex number

Let A,B and C represent the complex number z_1, z_2, z_3 respectively on the complex plane. If the circumcentre of the triangle ABC lies on the origin, then the orthocentre is represented by the number

Let A,B and C represent the complex number z_(1),z_(2),z_(3) respectively on the complex plane.If the circumcentre of the triangle ABC lies on the origin,then the orthocentre is represented by the number

The points A,B and C represent the complex numbers z_(1),z_(2),(1-i)z_(1)+iz_(2) respectively, on the complex plane (where, i=sqrt(-1) ). The /_\ABC , is