Home
Class 12
MATHS
The internal centre of similitude of the...

The internal centre of similitude of the circles `x^2 + y^2 - 2x+4y + 4 =0,x^2 + y^2 + 4x - 2y +1=0` divides the segment joining their centres in the ratio

Promotional Banner

Similar Questions

Explore conceptually related problems

The external centre of similitude of the circle x^(2)+y^(2)-12x+8y+48=0 and x^(2)+y^(2)-4x+2y-4=0 divides the segment joining centres in the ratio

The external centre of similitude of the circle x^(2)+y^(2)-12x+8y+48=0 and x^(2)+y^(2)-4x+2y-4=0 divides the segment joining centres in the ratio.

The external centre of similitude of the circle x^(2)+y^(2)-12x+7y+48=0 and x^(2)+y^(2)-4x+2y-4=0 divides the segment joining centres in the ratio.

The external centre of similitude of the two circles x^(2)+y^(2)-2x-6y+9=0, x^(2)+y^(2)=4 is

The external centre of similitude of the two circles x^(2)+y^(2)-2x-6y+9=0, x^(2)+y^(2)=4 is

The internal centre of similitude of the two circles x^(2)+y^(2)+6x-2y+1=0, x^(2)+y^(2)-2x-6y+9=0 is

The internal centre of similitude of the two circles x^(2)+y^(2)+6x-2y+1=0, x^(2)+y^(2)-2x-6y+9=0 is

The internal centre of similitude of the two circles x^(2)+y^(2)+6x-2y+1=0 , x^(2)+y^(2)-2x-6y+9=0 is

Find the external centre of similitude for the circles x^(2) + y^(2) - 2x - 6y + 9 =0 and x^(2) + y^(2) = 4