Home
Class 12
MATHS
Let a1,a2,a3…………., an be positive number...

Let `a_1,a_2,a_3…………., a_n` be positive numbers in G.P. For each n let `A_n, G_n, H_n` be respectively the arithmetic mean geometric mean and harmonic mean of `a_1,a_2,……..,a_n` On the basis of above information answer the following question: `A_k,G_k,H_k` are in (A) A.P. (B) G.P. (C) H.P. (D) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

Let a_1, a_2 ,........ be positive real numbers in geometric progression. For each n, let A_n, G_n, H_n be respectively the arithmetic mean, geometric mean and harmonic mean of a_1,a_2..........a_n . Find an expression ,for the geometric mean of G_1,G_2,........G_n in terms of A_1, A_2,........ ,A_n, H_1, H_2,........,H_n .

.Let a_1, a_2,............ be positive real numbers in geometric progression. For each n, let A_n G_n, H_n , be respectively the arithmetic mean, geometric mean & harmonic mean of a_1,a_2..........a_n . Find an expression ,for the geometric mean of G_1,G_2,........G_n in terms of A_1, A_2,........ ,A_n, H_1, H_2,........,H_n .

.Let a_1, a_2,............ be positive real numbers in geometric progression. For each n, let A_n G_n, H_n, be respectively the arithmetic mean, geometric mean & harmonic mean of a_1,a_2..........a_n. Find an expression ,for the geometric mean of G_1,G_2,........G_n in terms of A_1, A_2,........ ,A_n, H_1, H_2,........,H_n.

.Let a_1, a_2,............ be positive real numbers in geometric progression. For each n, let A_n G_n, H_n , be respectively the arithmetic mean, geometric mean & harmonic mean of a_1,a_2..........a_n . Find an expression ,for the geometric mean of G_1,G_2,........G_n in terms of A_1, A_2,........ ,A_n, H_1, H_2,........,H_n .

Let A,G,H and S respectively denote the arithmetic mean, geometric mean, harmonic mean and the sum of the numbers a_1,a_2,a_3……..a_n . Then the value of x at which the function f(x)=sum_(k=1)^n(x-a_k)^2 has minimum is

If a_n= int_0^pi (sin(2n-1)x)/(sinx) dx . Then the number a_1,a_2,a_3 …….. Are in (A) A.P (B) G.P (C) H.P (D) none of these

If a_n= int_0^pi (sin(2n-1)x)/(sinx) dx . Then the number a_1,a_2,a_3 …….. Are in (A) A.P (B) G.P (C) H.P (D) none of these

If a_n= int_0^pi (sin(2n-1)x)/(sinx) dx . Then the number a_1,a_2,a_3 …….. Are in (A) A.P (B) G.P (C) H.P (D) none of these

If a_1,a_2,a_3……..a_n are in H.P. and f(k) = sum_(r=1)^na_r-a_k then (f(1))/a_1, (f(2))/a_3 ….f(n)/a_n are (A) A.P. (B) G.P. (C) H.P. (D) none of these

If a_1,a_2, a_3………. are in H.P. and f(k) =sum_(r=1)^n a_r-a_k, the a_1/(f(1)), a_2/(f(2)), a_3/(f(3)), …….., a_n/(f(n)) are in (A) A.P. (B) G.P (C) H.P. (D) none of these