Home
Class 11
MATHS
If n in N >1 , then the sum of real par...

If `n in N >1` , then the sum of real part of roots of `z^n=(z+1)^n` is equal to `n/2` b. `((n-1))/2` c. ` n/2` d. `((1-n))/2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If nin Ngt1, find the sum of real parts of the roots of the equation z^(n)=(z+1)^(n).

If nin Ngt1, find the sum of real parts of the roots of the equation z^(n)=(z+1)^(n).

(lim)_(n->oo)(n !)/((n+1)!+n !) is equal to a. 1 b . 0 c. 2 d. 1/2

sum_(k=1)^ook(1-1/n)^(k-1)=>? a. n(n-1) b. n(n+1) c. n^2 d. (n+1)^2

If z + (1)/(z) = 2 cos theta, z in "C then z"^(2n) - 2z^(n) cos (n theta) is equal to

If n is a natural number gt 2 , such that z^(n) = (z+1)^(n) , then (a) roots of equation lie on a straight line parallel to the y-axis (b) roots of equaiton lie on a straight line parallel to the x-axis (c) sum of the real parts of the roots is -[(n-1)//2] (d) none of these

The value of sum_(r=0)^(n-1)^n C_r//(^n C_r+^n C_(r+1)) equals a. n+1 b. n//2 c. n+2 d. none of these

{ n (n+1) (2n+1) : n in Z} sub

Let |z_r-r|lt=r ,AAr=1,2,3,... ,n Then |sum_(r=1)^n Z_r| is less than n b. 2n c. n(n+1) d. (n(n+1))/2

Let |z_r-r|lt=r ,AAr=1,2,3,... ,n Then |sum_(r=1)^n Z_r| is less than n b. 2n c. n(n+1) d. (n(n+1))/2