Home
Class 11
MATHS
53, Solution set of logx 2.log(2x)2=log(...

53, Solution set of `log_x 2.log_(2x)2=log_(4x) 2` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The solution set of log_(x)2 log_(2x)2 = log_(4x) 2 is :

Solve log_(x)2log_(2x)2=log_(4x)2

The solution set of the equation "log"_(x)2 xx "log"_(2x)2 = "log"_(4x) 2, is

The solution set of the equation "log"_(x)2 xx "log"_(2x)2 = "log"_(4x) 2, is

The solution set of the equation "log"_(x)2 xx "log"_(2x)2 = "log"_(4x) 2, is

Statement-1: The solution set of the equation "log"_(x) 2 xx "log"_(2x) 2 = "log"_(4x) 2 "is" {2^(-sqrt(2)), 2^(sqrt(2))}. Statement-2 : "log"_(b)a = (1)/("log"_(a)b) " and log"_(a) xy = "log"_(a) x + "log"_(a)y

Statement-1: The solution set of the equation "log"_(x) 2 xx "log"_(2x) 2 = "log"_(4x) 2 "is" {2^(-sqrt(2)), 2^(sqrt(2))}. Statement-2 : "log"_(b)a = (1)/("log"_(a)b) " and log"_(a) xy = "log"_(a) x + "log"_(a)y

The solution set of 2log_(2)log_(2)x+log_((1)/(2))log_(2)(2sqrt(2)x)=1 is

Solve for x: a) log_(x)2. log_(2x)2 = log_(4x)2 b) 5^(logx)+5x^(log5)=3(a gt 0), where base of log is 3.