Home
Class 12
MATHS
The value of lim sum(k=1)^n (n-k)/n cos(...

The value of `lim sum_(k=1)^n (n-k)/n cos((4k)/n)` equals to

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of \lim_{n \to \infty } sum_(k=1)^n (n-k)/(n^2) cos((4k)/n) equals to

The value of Lim_(n rarr oo)sum_(k=1)^(n)(n-k)/(n^(2))cos((4k)/n) equals

The value of lim_(n->oo) sum_(k=1)^n log(1+k/n)^(1/n) ,is

The value of lim_(n->oo) sum_(k=1)^n log(1+k/n)^(1/n) ,is

The value of lim_(n->oo) sum_(k=1)^n log(1+k/n)^(1/n) ,is

The value of lim _( n to oo) sum _(k =1) ^(n) ((k)/(n ^(2) +n +2k))=

The value of lim _( x to oo) sum _(k =1) ^(n) ((k)/(n ^(2) +n +2k))=

The value of lim_(n rarr oo)sum_(k=1)^(n)log(1+(k)/(n))^((1)/(n)) ,is

Find the value of lim_(n rarr oo)sum_(k=1)^(n)((k)/(n^(2)+k))