Home
Class 11
MATHS
loga(1-1/2)+loga(1-1/3)+......loga(1-1/n...

`log_a(1-1/2)+log_a(1-1/3)+......log_a(1-1/n)`

Promotional Banner

Similar Questions

Explore conceptually related problems

log2+log(1+(1)/(2))+log(1+(1)/(3))+.........+log(1+(1)/(n-1))=

If x_n > x_(n-1) > ..........> x_3 > x_1 > 1. then the value of log_(x_1) [log_(x _2) {log_(x_3).........log_(x_n) (x_n)^(x_(r=i))}]

If x_n > x_(n-1) > ..........> x_3 > x_1 > 1. then the value of log_(x_1) [log_(x _2) {log_(x_3).........log_(x_n) (x_n)^(x_(r=i))}]

If x_n > x_(n-1) > ..........> x_3 > x_1 > 1. then the value of log_(x_1) [log_(x _2) {log_(x_3).........log_(x_n) (x_n)^(x_(r=i))}]

If x_n > x_(n-1) > ..........> x_3 > x_1 > 1. then the value of log_(x1) [log_(x2) {log_(x3).........log_(x4) (x_n)^(x_(r=i))}]

lim_(n->oo)[log_(n-1)(n)log_n(n+1)*log_(n+1)(n+2).....log_(n^k-1) (n^k)] is equal to :

If a_ngt1 for all ninN ,then log_(a_2)a_1+log_(a3)a_2+.....+log_(an)a_(n-1)+log_(a1)a_n has the minimum value

(1)/(log_(2)x)+(1)/(log_(3)x)+......(1)/(log_(43)x)=(1)/(log_(43)!x)