Home
Class 11
MATHS
If a=log(24)12,b=log(36)24, c=log(48)36,...

If `a=log_(24)12,b=log_(36)24, c=log_(48)36`, then show that `1+abc=2bc`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a=log_(24)12,b=log_(36)24,C=log_(48)36 . then 1+abc is equal to

If a= log_(24) 12, b = log_(36) 24, c = log_(48) 36 , then 1 + abc is equal to

IF a = log_(24) 12, b = log_(36) 24, c = log_(48)36 , then 1 + abc is equal to

a=log_(24)12,b=log_(36)24,c=log_(48)36, if 1+abc=lambda bc then lambda is equal to

If log_(12)18 = x and log_(24)54 = y , then show that xy + 5(x-y) = 1

If a=log_(12)18,b=log_(24)54, then find the value of ab+5(a-b)

If x = log_(c ) b + log_(b)c , y=log_(a)c + log_(c ) a, z=log_(b)a+log_(a)b , then show that x^(2) + y^(2) + z^(2) - 4 = xyz .