Home
Class 11
MATHS
Value of x, satisfying 6/5a^(loga(x).(lo...

Value of x, satisfying `6/5a^(log_a(x).(log_10(a).log_a(5)) -3^(log_10(x/10)) = 9^(log_100(x)+log_4(2))` is :

Promotional Banner

Similar Questions

Explore conceptually related problems

5^(log_(10)x)=50-x^(log_(10)5)

(6)/(5)a^((log_(a)x)(log_(10)a)(log_(a)5))-3^(log_(10)((x)/(10)))=9^(log_(100)x+log_(4)2) (where a gt 0, a ne 1) , then log_(3)x=alpha +beta, alpha is integer, beta in [0, 1) , then alpha=

(6)/(5)a^((log_(a)x)(log_(10)a)(log_(a)5))-3^(log_(10)((x)/(10)))=9^(log_(100)x+log_(4)2)("where "a gt 0, a ne 1) , then log_(3)x=alpha +beta, alpha is integer, beta in [0, 1) , then alpha=

(6)/(5)a^((log_(a)x)(log_(10)a)(log_(a)5))-3^(log_(10)((x)/(10)))=9^(log_(100)x+log_(4)2)("where "a gt 0, a ne 1) , then log_(3)x=alpha +beta, alpha is integer, beta in [0, 1) , then alpha=

The value of x satisfying x+log_10(1+2^x)=x log_10 5+log_10 6 is

The value of x satisfying the equation 2^(log_2e^(In^5log 7^(log_10^(log_10(8x-3)))

If 6/5 a^A-3^B=9^C where A=log_a x.log_(10) alog_a 5,B=log_(10) (x/10) and C=log_(100) x+log_4 2 . Find x

The value of ' x 'satisfying the equation,4^(log_(9)3)+9^(log_(2)4)=10^(log_(x)83) is

Find the value of x satisfying (log_(10)(2^(x)+x-41)=x(1-log_(10)5)