Home
Class 12
MATHS
Show that 1+x ln(x+sqrt(x^2+1))geqsqrt(1...

Show that 1+x ln`(x+sqrt(x^2+1))geqsqrt(1+x^2)` for all `xgeq0.`

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that log(x+sqrt(1+x^(2))) 1

Show that 1 + x log (x + sqrt (x ^(2) + 1)) ge sqrt ( 1 + x ^(2)) AA x ge 0

int x((ln(x+sqrt(1+x^(2))))/(sqrt(1+x^(2)))dx

int x(ln(x+sqrt(1+x^(2))))/(sqrt(1+x^(2)))dx equals

int_-1^1 log(x+sqrt(x^2+1))dx

The function f (x) =1+ x ln (x+ sqrt(1+ x ^(2)))-sqrt(1- x^(2)) is:

the value of int x*(ln(x+sqrt(1+x^(2))))/(sqrt(1+x^(2)))dx

Diferentiate x sqrt(1+x^(2))+log(x+sqrt(x^(2)+1))

intdx/(sqrt(1+x^2)sqrt(log(x+sqrt(1+x^2))))

int((x)/(sqrt(1+x^(2)))-1)log(x+sqrt(1+x^(2)))backslash dx