Home
Class 12
MATHS
An extremum of the function f(x)=(2-x)/p...

An extremum of the function `f(x)=(2-x)/picospi(x+3)+1/(pi^2)sinpi(x+3),0x<4,` occurs at `x=1` (b) `x=2` `x=3` (d) `x=pi`

Promotional Banner

Similar Questions

Explore conceptually related problems

The number of points of extremum of the function f(x)=(x-2)^(2/3)(2x+1) is

An extremum value of the function f(x)=(sin^(-1)x)^(3)+(cos^(-1)x)^(3)(-1<=x<=1) is

Discuss the extremum of the function f(x)=(x-1)(x-2)(x-3).How many criticla points f(x) has?

The set of values of p for which the points of extremum of the function,f(x)=x^(3)-3px^(2)+3(p^(2)-1)x+1lin in the interval (-2,4) is

The fundamental period of the function f(x)=[x]+[x+(1)/(3)]+[x+(2)/(3)]-3x+sin3 pi x-1 is :-

Verify mean value theorem for the function f(x) = x^(3)-2x^(2)-x+3 in [0,1]

Verify Rolle's Theorem for the functions : f(x)=sin^(3)x+cos^(3)x in the interval [0,pi/2] .

If the range of the function F(x)=tan^(-1)(3x^(2)+bx+c) is [0,(pi)/(2)) (domain in R) then :

The minimum value of the function f(x)=2tan x+3cot x where x in(0 ,(pi)/(2)) is