Home
Class 12
MATHS
Let f(x) be an increasing function defin...

Let `f(x)` be an increasing function defined on `(0,oo)` . If `f(2a^2+a+1)>f(3a^2-4a+1),` then the possible integers in the range of `a` is/are `1` (b) 2 (c) 3 (d) 4

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x) be a increasing function defined on (0,\ oo)dot If f(2a^2+a+1)>f\ (3a^2-4a+1)dot Find the range of adot

Let f:(0,oo)rarr R be a (strictly) decreasing function.If f(2a^(2)+a+1)

Let f:(1,3)rarr R be a function defined by f(x)=(x[x])/(1+x^(2)) , where [x] denotes the greatest integer <=x .Then the range of f is

Let fbe a function defined as f : (0, e^(-3/2)]->[-1/4,oo) , f(x)=(In x)^2 + 3 In x+2 then f^-1(x) equals

Let f(x) be a non-constant twice differentiable function defined on (oo,oo) such that f(x)=f(1-x) and f'(1/4)=0^(@). Then