Home
Class 12
MATHS
If f^(prime)(x)=|x|-{x}, where {x} denot...

If `f^(prime)(x)=|x|-{x},` where {x} denotes the fractional part of `x ,` then `f(x)` is decreasing in `(-1/2,0)` (b) `(-1/2,2)` `(-1/2,2)` (d) `(1/2,oo)`

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=sqrt((x-1)/(x-2{x})) , where {*} denotes the fractional part.

If f(x)-{x^(2)}-({x})^(2), where (x) denotes the fractional part of x, then

lim_(x rarr0){(1+x)^((2)/(x))}( where {x} denotes the fractional part of x ) is equal to.

Solve {x+1}-x^(2)+2x>0( where {.} denotes fractional part function)

Domain of f(x)=(1)/(sqrt({x+1}-x^(2)+2x)) where {} denotes fractional part of x.

The domain of f(x)=sqrt(2{x}^(2)-3{x}+1) where {.} denotes the fractional part in [-1,1]

The domain of f(x)=(1)/(sqrt(-x^(2)+{x})) (where {.} denotes fractional part of x) is

lim_(x rarr-1)(1)/(sqrt(|x|-{-x}))( where {x} denotes the fractional part of (x) is equal to (a)does not exist (b) 1(c)oo(d)(1)/(2)

Domain of f(x)=sqrt(2{x}^(2)-3{x}+1 (where {} denotes the fraction part),in [-1,1] is,