Home
Class 12
MATHS
If b^2>4a c then roots of equation a x^4...

If `b^2>4a c` then roots of equation `a x^4+b x^2+c=0` are all real and distinct if: ` (a) `b<0,a<0,c>0` (b) `b<0,a>0,c>0` (c) `b>0,a>0,c>0` (d) `b>0,a<0,c<0``

Promotional Banner

Similar Questions

Explore conceptually related problems

If b^2>4a c then roots of equation a x^4+b x^2+c=0 are all real and distinct if: (a) b 0 (b) b 0,c>0 (c) b>0,a>0,c>0 (d) b>0,a<0,c<0

If b^(2)>4ac then roots of equation ax^(4)+bx^(2)+c=0 are all real and distinct if: b 0b>0,a>0,c>0(d)b>0,a<0,c<0

If a+b+c=0 then check the nature of roots of the equation 4a x^2+3b x+2c=0 where a ,b ,c in R

If a+b+c=0, a,b,c in Q then roots of the equation (b+c-a) x ^(2) + (c+a-c) =0 are:

If a+b+c=0 then check the nature of roots of the equation 4a x^2+3b x+2c=0 where a ,b ,c in Rdot

If a+b+c=0 then check the nature of roots of the equation 4a x^2+3b x+2c=0 where a ,b ,c in Rdot

If a and b are the real roots of the equation x^(2) - kx + c = 0, then the distance between the points (a, 0) and (b, 0) is

Given that a x^2+b x+c=0 has no real roots and a+b+c 0 d. c=0