Home
Class 11
CHEMISTRY
What is the energy of photons that corre...

What is the energy of photons that corresponds to a wave number of `2.5 xx 10^(-5)cm^(-1)`

A

`2.5 xx 10^(-20)erg`

B

`5.1xx 10^(-23)erg`

C

`4.97 xx 10^(-21)erg`

D

`8.5 xx 10^(-2)erg`

Text Solution

AI Generated Solution

The correct Answer is:
To find the energy of photons that corresponds to a wave number of \(2.5 \times 10^{-5} \, \text{cm}^{-1}\), we can follow these steps: ### Step 1: Understand the relationship between energy, wave number, and constants The energy \(E\) of a photon is given by the formula: \[ E = h \nu \] where \(h\) is Planck's constant and \(\nu\) is the frequency of the photon. The frequency can be related to the wave number \(\bar{\nu}\) (in \(\text{cm}^{-1}\)) using the equation: \[ \nu = c \cdot \bar{\nu} \] where \(c\) is the speed of light. ### Step 2: Substitute the wave number into the energy formula We can substitute the expression for frequency into the energy equation: \[ E = h c \bar{\nu} \] ### Step 3: Convert units Given that the wave number is in \(\text{cm}^{-1}\), we need to convert it to \(\text{m}^{-1}\) for consistency in SI units: \[ \bar{\nu} = 2.5 \times 10^{-5} \, \text{cm}^{-1} = 2.5 \times 10^{-5} \times 10^2 \, \text{m}^{-1} = 2.5 \times 10^{-3} \, \text{m}^{-1} \] ### Step 4: Use known constants Now we can use the values of Planck's constant and the speed of light: - Planck's constant \(h = 6.626 \times 10^{-34} \, \text{J s}\) - Speed of light \(c = 3.00 \times 10^8 \, \text{m/s}\) ### Step 5: Calculate the energy Now substitute the values into the energy formula: \[ E = (6.626 \times 10^{-34} \, \text{J s}) \times (3.00 \times 10^8 \, \text{m/s}) \times (2.5 \times 10^{-3} \, \text{m}^{-1}) \] Calculating this step-by-step: 1. Calculate \(h \cdot c\): \[ h \cdot c = 6.626 \times 10^{-34} \times 3.00 \times 10^8 = 1.9878 \times 10^{-25} \, \text{J m} \] 2. Now multiply by the wave number: \[ E = 1.9878 \times 10^{-25} \times 2.5 \times 10^{-3} = 4.9695 \times 10^{-28} \, \text{J} \] ### Step 6: Convert to a more convenient form To express this in scientific notation: \[ E \approx 4.97 \times 10^{-28} \, \text{J} \] ### Final Answer The energy of the photons that corresponds to a wave number of \(2.5 \times 10^{-5} \, \text{cm}^{-1}\) is approximately: \[ E \approx 4.97 \times 10^{-28} \, \text{J} \]

To find the energy of photons that corresponds to a wave number of \(2.5 \times 10^{-5} \, \text{cm}^{-1}\), we can follow these steps: ### Step 1: Understand the relationship between energy, wave number, and constants The energy \(E\) of a photon is given by the formula: \[ E = h \nu \] where \(h\) is Planck's constant and \(\nu\) is the frequency of the photon. The frequency can be related to the wave number \(\bar{\nu}\) (in \(\text{cm}^{-1}\)) using the equation: ...
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

What is the energy of photons that corresponds to a wave number of 5 xx 10^(-5)m^(-1)

What will be the energy of a photon which corresponds to the wavelength of 0.50 Å?

If the energy of a photon corresponding to a wavelength of 6000 Å is 3.32 xx 10^(-19) J , the photon energy for a wavelength of 4000 Å will be

Find the energy of a photon that a corresponds in light frequency at 3 xx 10^(6) Hz b. Has a wavelength of 300 nm

Calculate the energy of photon of light having frequency of 2.7 xx 10^(13) s^(-1)

The enegy of photon corresponding to a radiatio of wavelength 600 nm is 3.32xx10^(-19)J . The energy of a photon corresponding to a wavelength of 400 nm is

What is the energy of a photon in eV corresponding to the vissible light of maximum wavelength?

What are (a) the energy of a photon corresponding to wavelength 1.00 nm, (b) the kinetic energy of an electron with de Broglie wavelength 1.00 nm, (c) the energy of a photon corresponding to wavelength 1.00 fm, and (d) the kinetic energy of an electron with de Broglie wavelength 1.00 fm?

NARAYNA-ATOMIC STRUCTURE-All Questions
  1. The frequency of a wave light is 1.0 xx 10^(6)sec^(-1). The wave lengt...

    Text Solution

    |

  2. The energy per quantum associated with light of wave length 250 xx 10^...

    Text Solution

    |

  3. What is the energy of photons that corresponds to a wave number of 2.5...

    Text Solution

    |

  4. Nitrogen laser produces a radiation at a wavelength of 337.1nm. If the...

    Text Solution

    |

  5. The ratio of energies of photons with wavelength 2000A^(0) and 4000A^(...

    Text Solution

    |

  6. Electromagnetic radiation of wavelength 242 nm is just sufficient to i...

    Text Solution

    |

  7. When a metal is irradiated with light of frequency 4.0 xx 10^(16)s^(-1...

    Text Solution

    |

  8. In photo electric effect, if the energy required to over come the attr...

    Text Solution

    |

  9. The ratio of highest possile wavelength to lowest possible wavelength ...

    Text Solution

    |

  10. If the wave number of the first line in the Balmer series of hydrogen ...

    Text Solution

    |

  11. What is the lowest energy of the spectral line emitted by the hydrogen...

    Text Solution

    |

  12. The ionization energy of H atom is x kJ. The energy required for the e...

    Text Solution

    |

  13. The number of spectral lines obtain in Bohr spectrum of hydrogen at...

    Text Solution

    |

  14. The Ratio of m^(th) to n^(th) wavelength of Lyman series in H-spectrum...

    Text Solution

    |

  15. Which is the correct relationship? (a). E(1) of H=1//2E(2) of He^(+)=1...

    Text Solution

    |

  16. What is the wavelength of a photon emitted during a transition from n ...

    Text Solution

    |

  17. Which of the transitions in hydrogen atom emits a photon of lowest fre...

    Text Solution

    |

  18. The velocity of electron in first orbit of H-atom as compared to the v...

    Text Solution

    |

  19. In a collection of H-atoms, all the electrons jump from n=5 to ground ...

    Text Solution

    |

  20. What is likely to be principal quantum number for a circular orbit of ...

    Text Solution

    |