Home
Class 12
MATHS
Let f: R-> be a differentiable function...

Let `f: R->` be a differentiable function `AAx in R` . If the tangent drawn to the curve at any point `x in (a , b)` always lies below the curve, then (a) `f^(prime)(x)<0,f^(x)<0AAx in (a , b)` (b)`f^(prime)(x)>0,f^(x)>0AAx in (a , b)` (c)`f^(prime)(x)>0,f^(x)>0AAx in (a , b)` (d)`non eoft h e s e`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)gt0 and differentiable in R, then : f'(x)=

Let g^(prime)(x)>0a n df^(prime)(x)<0AAx in Rdot Then (f(x+1))>g(f(x-1)) f(g(x-1))>f(g(x+1)) g(f(x+1))

Let g'(x)gt 0 and f'(x) lt 0 AA x in R , then

Let f(x) be a continuous function, AA x in R, f(0) = 1 and f(x) ne x for any x in R , then show f(f(x)) gt x, AA x in R^(+)

Let g(x)=f(tanx)+f(cotx),AAx in ((pi)/(2),pi). If f''(x)lt0,AAx in ((pi)/(2),pi), then

If for the function f(x)=1/4x^2+b x+10 ;f(12-x)=f(x)AAx in R , then the value of ' b ' is-

If f: RvecR is a differentiable function such that f^(prime)(x)>2f(x)fora l lxRa n df(0)=1,t h e n : f(x) is decreasing in (0,oo) f^(prime)(x) e^(2x)in(0,oo)

If f(x) is twice differentiable and continuous function in x in [a,b] also f'(x) gt 0 and f ''(x) lt 0 and c in (a,b) then (f(c) - f(a))/(f(b) - f(a)) is greater than