Home
Class 12
MATHS
The function f(x)=sum(k=1)^5 (x-K)^2 ass...

The function `f(x)=sum_(k=1)^5 (x-K)^2` assumes then minimum value of `x` given by (a) `5` (b) `5/2` (c) `3` (d) `2`

Promotional Banner

Similar Questions

Explore conceptually related problems

The function f(x)=sum_(r=1)^(5)(x-r)^(2) assuming minimum value at x=(a)5(b)(5)/(2)(c)3(d)2

The minimum value of |x-3|+|x-2|+|x-5| is (A) 3 (B) 7 (C) 5 (D) 9

Minimum value of f(x)=2x^(2)-4x+5 is 1 (b) -1(c)11 (d) 3

The minimum value of the function f (x) =x^(3) -3x^(2) -9x+5 is :

The function f(x)=(K tan x+2)/(tanx +1) is decreasing for all values of x then (A) K (B) K>1 (C) K (D) K>2

If f(x) = [kx+1,x 5] is continuous then value of k is : (a) (9)/(5) (b) (5)/(9) (c) (5)/(3) (d) (3)/(5)

Local minimum value of f(x)=x^(3)-3x^(2)-24x+5 is a) 33 b) -75 c) -2 d) 4

if f(x)=(x^(3))/(3)-x^(2)+(1)/(5) find maximum and minimum value of f(x)

The minimum value of f(x)=|3-x|+|2+x|+|5-x| is

If the sum of the zeros of the polynomial f(x)=2x^(3)-3kx^(2)+4x-5 is 6, then the value of k is (a) 2 (b) 4(c)-2(d)-4