Home
Class 12
MATHS
In the matrix A=[{:(a,1,x),(2,sqrt(3),x^...

In the matrix `A=[{:(a,1,x),(2,sqrt(3),x^(2)-y) ,(0,5,(-2)/(5)):}] ` write
(i) the order of the matrix A.
(ii) the number of elements.
(iii) elements `a_(23) ,a_(31)` and `a_(1)`,

Text Solution

Verified by Experts

we have `A=[{:(a,1,x),(2,sqrt(3),x^(2)-y),(0,5,(-2)/(5)):}]`
(i) the order of matrix A=`3xx3`
(ii) the number of elements `=3xx3=9`
[since the number of elements in an `mxxn` matrix will be equal to `mxxn=mn`]
(iii) `a_(23)=x^(2)-y,a_(31)=0,a_(12)=1`
[since , we know that `a` is a representation of element lying in the row and column]
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    NCERT EXEMPLAR|Exercise Linear Programming|45 Videos
  • PROBABILITY

    NCERT EXEMPLAR|Exercise Probability|107 Videos

Similar Questions

Explore conceptually related problems

in the matrix a=[{:(2,5,19,-7),(35,-2,(5)/(2),12),(sqrt(3),1,-5,17):}], write: (i) the order of the matrix, (ii) the number of elements , (iii) write the elements , a_(13),a_(21),1_(33),1_(24),a_(23).

In the matrix A =[[2,5,19,7],[35,-2,5/2,12],[sqrt3,1,-5,17]] , write: (i) The order of the matrix, (ii) The number of elements,(iii) Write the elements a_(13),a_(21),a_(33),a_(24),a_(23) .

If Delta=|{:(5,3,8),(2,0,1),(1,2,3):}| , write : (i) the minor of the element a_(23) (ii) the co-factor of the element a_(32) .

If A=[{:(5,-2,6," "1),(7," "0,8,-3),(sqrt(2)," "(3)/(5),4," "3):}] then write (i) the number of rows in A, (ii) the number of columns in A, (iii) the order of the matrix A, (iv) the number of all entries in A, (v) the elements a_(23),a_(31),a_(14),a_(33),a_(22) of A.

Construct a 2xx2 matrix A=[a_(ij)] whose elements are given by : a_(ij)=(2i-j)/(3)

Write the element a_(12) of the matrix A=[a_(ij)]_(2xx2) , whose elements a_(ij) are given by a_(ij)=e^(2ix)sinjx .

Construct a 2xx3 matrix A=[a_(ij)] whose elements are given by a_(ij)=(1-j)/(1+i)

For a 2xx2 matrix A=[a_(ij)] whose elements are given by a_(ij)=(i)/(j), write the value of a_(12) .

NCERT EXEMPLAR-MATRICES-Matrices
  1. If a matrix h as 28 elements, what are the possible orders it can have...

    Text Solution

    |

  2. In the matrix A=[{:(a,1,x),(2,sqrt(3),x^(2)-y) ,(0,5,(-2)/(5)):}] wri...

    Text Solution

    |

  3. Construct a(2xx2) matrix, where (i) a(ij)=((i-2j)^(2))/(2) (ii) a(ij...

    Text Solution

    |

  4. Construct a 3xx2 matrix whose elements are given by a(ij)=e^(i.x)-sinj...

    Text Solution

    |

  5. Find the values of a and b, if A=B,where A=[{:(a+4,3b),(8,-6):}] "a...

    Text Solution

    |

  6. If possible find the sum of the matrics A and B, where A=[{:( sqrt(3...

    Text Solution

    |

  7. If X=[{:( 3,1,-1) ,(5,-2,-3) :}] "and" Y= [{:( 2,1,-1),( 7,2,4):}] the...

    Text Solution

    |

  8. Find non-zero values of x satisfying the matrix equation. x[{:(2x,2)...

    Text Solution

    |

  9. If A=[{:(0,1),(1,1):}] "and" B=[{:(0,-1),(1,0):}], then show that ...

    Text Solution

    |

  10. Find the value of x, if [(1,x,1)][{:(1,3,2),(2,5,1),(15,3,2):}][{:(1),...

    Text Solution

    |

  11. Show that A =[{:(5,3),(-1,-2):}] satisfies the equation A^(2)-3A-7I=0 ...

    Text Solution

    |

  12. if[{:(2,1),(3,2):}]A[{:(-3,2),(5,-3):}]=[{:(1,0),(0,1):}],"then" A=?

    Text Solution

    |

  13. FindA, if [{:(4),(1),(3):}]A=[{:(-4,8,4),(-1,2,1),(-3,6,3):}]

    Text Solution

    |

  14. A=[{:(2,1,2),(1,2,4):}] and B=[{:(4,1),(2,3),(1,2):}] Verify AB=BA or...

    Text Solution

    |

  15. If A[{:(3,-4),(1,1),(2,0):}] and B=[{:(2,1,2),(1,2,4):}] , then verify...

    Text Solution

    |

  16. Give an example of two non-zero 2xx2 matrices A and B such that A B...

    Text Solution

    |

  17. Given A=[{:(2,4,0),(3,9,6):}] "and" B=[{:(1,4),(2,8),(1,3):}], is (AB)...

    Text Solution

    |

  18. Solve for x and y , x[{:(2),(1):}]+y[{:(3),(5):}]+[{:(-8),(-11):}]=0.

    Text Solution

    |

  19. If X and Y are 2xx2 matrices, then solve the following matrix equat...

    Text Solution

    |

  20. If A=[3 5],B=[7 3], then find a non-zero matrix C such that AC=BC.

    Text Solution

    |