Home
Class 12
MATHS
If A is square matrix such that A^(2)=A,...

If A is square matrix such that `A^(2)=A`, then show that `(I+A)^(3)=7A+I`.

Text Solution

Verified by Experts

Since `A^(2)=A` and `(I+A)=I^(2)+IA+AI+A^(2)`
`=I^(2)+2AI+A^(2)`
`=I+2A+A=I+3A`
and `(I+A).(I+A)(I+A)=I+A)(I+3A)`
`=I+2A+A=I+3A`
and `(I+A).(I+A)(I+A)=(I+A)(I+3A)`
`I^(2)+3AI+AI+3A ^(2)`
`=I+ 4AI+3A`
`=I+7A=7A+I` Hence proved.
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    NCERT EXEMPLAR|Exercise Linear Programming|45 Videos
  • PROBABILITY

    NCERT EXEMPLAR|Exercise Probability|107 Videos

Similar Questions

Explore conceptually related problems

If A is a square matrix such that A^(2)=A show that (I+A)^(3)=7A+I.

If A is a square matrix such that A^(2)=A show that (I+A)^(3)=7A+I

If A is a square matrix such that A^(2)=A, then (I-A)^(2)+A=

If A is square matrix such that A^(2)=A, then (I+A)^(3)-7A is equal to (A)A(B)I-A(C)I(D)3A

If A is a square matrix such that A^(2)=A, then (I+A)^(3)-7A is equal to (a) A (b) I-A(c)I(d)3A

Assertion (A) : If A is square matrix such that A ^(2) = A, then ( I + A)^(2) - 3 A = I Reason (R) : AI = IA = A

If A is a square matrix such that A A^T=I=A^TA , then A is

If A is a square matrix such that A^(2)= I , then (A-I)^(3)+(A+I)^(3)-7A is equal to

If A is a square matrix such that A^(2)=I, then (A-I)^(3)+(A+I)^(3)-7A is equal to A(b)I-A(c)I+A(d)3A

If A is a square matrix such that A^(2)=A then write the value of 7A-(I+A)^(3), where I is the identity matrix.

NCERT EXEMPLAR-MATRICES-Matrices
  1. If matrix [{:(0,a,3),(2,b,-1),(c,1,0):}] is skew-symmetric matrix, the...

    Text Solution

    |

  2. If P(x)=[(cosx, sinx),(-sinx, cosx)], then show that P(x).P(y)=P(x+y)=...

    Text Solution

    |

  3. If A is square matrix such that A^(2)=A, then show that (I+A)^(3)=7A+I...

    Text Solution

    |

  4. If A, B are square matrices of same order and B is skew-symmetric mat...

    Text Solution

    |

  5. Let A ,B be two matrices such that they commute. Show that for any pos...

    Text Solution

    |

  6. z, if A='[{:(0,2y,z),(x,y,-z),(x,-y,z):}] satisfy A'=A^(-1)

    Text Solution

    |

  7. If possible using elementary row transformations, find the inverse of ...

    Text Solution

    |

  8. Express the matrix [{:(2 ,1),(3,4):}] as the sum of a symmetric and a ...

    Text Solution

    |

  9. The matrix P=[{:(0,0,4),(0,4,0),(4,0,0):}] is a

    Text Solution

    |

  10. Total number of possible matrices of order 3xx3 with each entry 2 or 0...

    Text Solution

    |

  11. [{:(2x+y,4x),(5x-7,4x):}]=[{:(7,7y-13),(y,x+6):}] then the value of x,...

    Text Solution

    |

  12. If A=1/pi[sin^(-1)(pix)tan^(-1)(x/pi)sin^(-1)(x/pi)cot^(-1)(pix)] and ...

    Text Solution

    |

  13. If A and B are two matrices of the order 3 xx m and 3 xx n, respective...

    Text Solution

    |

  14. If A=[{:(0,1),(1,0):}] then A^(2) is equal to

    Text Solution

    |

  15. If matrix A=[a(ij)](2X2), where a(ij)={[1,i!=j],[0,i=j]}, then A^2 i...

    Text Solution

    |

  16. The matrix [{:(1,0,0),(0,2,0),(0,0,4):}] is a

    Text Solution

    |

  17. The matrix [{:(0,-5,8),(5,0,12),(-8,-12,0):}] is a

    Text Solution

    |

  18. If A is matrix of order mxxn and B is a matrix such that AB' and B'A ...

    Text Solution

    |

  19. if A and B are matrices of same order, then (AB'-BA') is a 1) null mat...

    Text Solution

    |

  20. If A is a square matrix such that A^(2)= I, then (A-I)^(3)+(A+I)^(3)...

    Text Solution

    |