Home
Class 12
MATHS
If A=[{:(0,1),(1,0):}] then A^(2) is equ...

If `A=[{:(0,1),(1,0):}]` then `A^(2)` is equal to

A

`[{:(0,1),(1,0):}]`

B

`[{:(1,0),(1,0):}]`

C

`[{:(0,1),(0,1):}]`

D

`[{:(1,0),(0,1):}]`

Text Solution

AI Generated Solution

The correct Answer is:
To find \( A^2 \) where \( A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \), we will multiply the matrix \( A \) by itself. ### Step-by-Step Solution: 1. **Write down the matrix \( A \)**: \[ A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \] 2. **Set up the multiplication for \( A^2 \)**: \[ A^2 = A \times A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \times \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \] 3. **Perform the multiplication**: - To find the element in the first row and first column: \[ (0 \times 0) + (1 \times 1) = 0 + 1 = 1 \] - To find the element in the first row and second column: \[ (0 \times 1) + (1 \times 0) = 0 + 0 = 0 \] - To find the element in the second row and first column: \[ (1 \times 0) + (0 \times 1) = 0 + 0 = 0 \] - To find the element in the second row and second column: \[ (1 \times 1) + (0 \times 0) = 1 + 0 = 1 \] 4. **Combine the results**: \[ A^2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] 5. **Final Result**: \[ A^2 = I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] where \( I \) is the identity matrix.

To find \( A^2 \) where \( A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \), we will multiply the matrix \( A \) by itself. ### Step-by-Step Solution: 1. **Write down the matrix \( A \)**: \[ A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \] ...
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    NCERT EXEMPLAR|Exercise Linear Programming|45 Videos
  • PROBABILITY

    NCERT EXEMPLAR|Exercise Probability|107 Videos

Similar Questions

Explore conceptually related problems

If A=[(1,0,0),(0,1,0),(1,b,-10] then A^2 is equal is (A) unit matrix (B) null matrix (C) A (D) -A

If A = {:((1,-1),(1,2)):} and I={:((1,0),(0,1)):} then 3A^(-1) is equal to :

If A=[(1,0,0),(0,1,0),(a,b,-1)] then A^2 is equal to (A) null matrix (B) unit matrix (C) -A (D) A

If A is any 2 xx matrix such that [{:(1,2),(0,3):}]A=[{:(-1,0),(6,3):}] then what is A equal to ?

If A=[[1,0(1)/(2),1]], then A^(100) is equal to

If A=[(2,2),(-3,2)], B=[(0,-1),(1,0)] then (B^(-1)A^(-1))^(-1) is equal to

If {:A=[(1,0,0),(0,1,0),(a,b,-1)]:} , then A^2 is equal to

NCERT EXEMPLAR-MATRICES-Matrices
  1. If A=1/pi[sin^(-1)(pix)tan^(-1)(x/pi)sin^(-1)(x/pi)cot^(-1)(pix)] and ...

    Text Solution

    |

  2. If A and B are two matrices of the order 3 xx m and 3 xx n, respective...

    Text Solution

    |

  3. If A=[{:(0,1),(1,0):}] then A^(2) is equal to

    Text Solution

    |

  4. If matrix A=[a(ij)](2X2), where a(ij)={[1,i!=j],[0,i=j]}, then A^2 i...

    Text Solution

    |

  5. The matrix [{:(1,0,0),(0,2,0),(0,0,4):}] is a

    Text Solution

    |

  6. The matrix [{:(0,-5,8),(5,0,12),(-8,-12,0):}] is a

    Text Solution

    |

  7. If A is matrix of order mxxn and B is a matrix such that AB' and B'A ...

    Text Solution

    |

  8. if A and B are matrices of same order, then (AB'-BA') is a 1) null mat...

    Text Solution

    |

  9. If A is a square matrix such that A^(2)= I, then (A-I)^(3)+(A+I)^(3)...

    Text Solution

    |

  10. For any two matrices A and B , we have

    Text Solution

    |

  11. On usign elementry column operation C(2)rArrC(2)-2C(1) in the followin...

    Text Solution

    |

  12. On using row operation R(1)rArrR(1)-3R(2) in the following matrix equa...

    Text Solution

    |

  13. ......... Matrix is both symmetric and skew-symmetric matrix.

    Text Solution

    |

  14. Sum of two skew-symmetric matrices is always ......... Matrix.

    Text Solution

    |

  15. The negative of a matrix is obtained b y multiplying it by ...........

    Text Solution

    |

  16. The product of any matrix by the scalar ......... Is the null matrix.

    Text Solution

    |

  17. A matrix which is not a square matrix is called a..........matrix.

    Text Solution

    |

  18. Matrix multiplication is distributive over matrix addition

    Text Solution

    |

  19. If A is a symmetric matrix , then A^(3) is a ........ Matrix.

    Text Solution

    |

  20. If A is a skew-symmetric matrix, then A^(2) is a .................

    Text Solution

    |