Home
Class 12
MATHS
On usign elementry column operation C(2)...

On usign elementry column operation `C_(2)rArrC_(2)-2C_(1)` in the following matrix equation `[{:(1,-3),(2,4):}]=[{:(1,01),(0,1):}][{:(3,1),(2,4):}]` , we have

A

`[{:(1,-5),(0,4):}]=[{:(1,-1),(-2,2):}][{:(3,-5),(2,0):}]`

B

`[{:(1,-5),(0,4):}]=[{:(1,-1),(0,1):}][{:(3,-5),(-0,2):}]`

C

`[{:(1,-5),(2,0):}]=[{:(1,-3),(0,1):}][{:(3,1),(2,4):}]`

D

`[{:(1,-5),(2,0):}] =[{:(1,-1),(0,1):}][{:(3,-5),(2,0):}]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given matrix equation using the elementary column operation \( C_2 \rightarrow C_2 - 2C_1 \), we will follow these steps: ### Step 1: Write down the initial matrices The given matrix equation is: \[ \begin{pmatrix} 1 & -3 \\ 2 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 3 & 1 \\ 2 & 4 \end{pmatrix} \] ### Step 2: Identify the columns to operate on We will apply the operation \( C_2 \rightarrow C_2 - 2C_1 \) on the left matrix \( \begin{pmatrix} 1 & -3 \\ 2 & 4 \end{pmatrix} \). ### Step 3: Perform the elementary column operation 1. **For the first row:** - The first column remains the same: \( 1 \) - The second column will be modified: \[ -3 - 2(1) = -3 - 2 = -5 \] 2. **For the second row:** - The first column remains the same: \( 2 \) - The second column will be modified: \[ 4 - 2(2) = 4 - 4 = 0 \] ### Step 4: Write the resulting matrix After applying the operation, the new matrix becomes: \[ \begin{pmatrix} 1 & -5 \\ 2 & 0 \end{pmatrix} \] ### Final Result Thus, after applying the elementary column operation \( C_2 \rightarrow C_2 - 2C_1 \), the resulting matrix is: \[ \begin{pmatrix} 1 & -5 \\ 2 & 0 \end{pmatrix} \] ---

To solve the given matrix equation using the elementary column operation \( C_2 \rightarrow C_2 - 2C_1 \), we will follow these steps: ### Step 1: Write down the initial matrices The given matrix equation is: \[ \begin{pmatrix} 1 & -3 \\ 2 & 4 ...
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    NCERT EXEMPLAR|Exercise Linear Programming|45 Videos
  • PROBABILITY

    NCERT EXEMPLAR|Exercise Probability|107 Videos

Similar Questions

Explore conceptually related problems

Use elementary column operation C_(2)rarr C_(2)+2C_(1) in the following matrix equation :([2,12,0])=([3,12,0]),([1,0-1,1])

Use elementary column operation C2 -> C2 -2C1 in the matrix equation [[4 ,2],[ 3, 3]]=[[1, 2 ],[0, 3]][[2 ,0],[ 1 ,1]]

If [(2,1),(7,4)]A[(-3,2),(5,-3)]=[(1,0),(0,1)] then matrix A equals

Solve the matrix equation A[[1,2],[3,4]]=[[1,-1],[0,0],[2,3]] using concept of inverse.

Let A+B+C= [{:(,4,-1),(,0,1):}],4A+2B+C=[{:(,0,-1),(,-3,2):}]and 9A+3B+C=[{:(,0,2),(,2,1):}]"then find A"

(i) if A=[{:(1,0),(0,1):}],B=[{:(0,1),(1,0):}]and C=[{:(1,0),(0,1):}], then show that A^(2)=B^(2)=C^(2)=I_(2). (ii) if A=[{:(1,0),(1,1):}],B=[{:(2,0),(1,1):}]and C=[{:(-1,2),(3,1):}], then show that A(B+C)=AB+AC. (iii) if A=[{:(1,-1),(-1,1):}]and B=[{:(1,1),(1,1):}], then show that AB is a zero matrix.

The matrix A = [{:(2 , -2, -4),(- 1, 3, 4),(1 , - 2, -3):}] is

If product of matrix A with [(0,1),(2,-4)] is [(3,2),(1,1)] , then A^(-1) is given by

if A=[{:(1,6),(2,4),(-3,5):}]B=[{:(3,4),(1,-2),(2,-1):}], then find a matrix C such that 2A-B+c=0

NCERT EXEMPLAR-MATRICES-Matrices
  1. If A is a square matrix such that A^(2)= I, then (A-I)^(3)+(A+I)^(3)...

    Text Solution

    |

  2. For any two matrices A and B , we have

    Text Solution

    |

  3. On usign elementry column operation C(2)rArrC(2)-2C(1) in the followin...

    Text Solution

    |

  4. On using row operation R(1)rArrR(1)-3R(2) in the following matrix equa...

    Text Solution

    |

  5. ......... Matrix is both symmetric and skew-symmetric matrix.

    Text Solution

    |

  6. Sum of two skew-symmetric matrices is always ......... Matrix.

    Text Solution

    |

  7. The negative of a matrix is obtained b y multiplying it by ...........

    Text Solution

    |

  8. The product of any matrix by the scalar ......... Is the null matrix.

    Text Solution

    |

  9. A matrix which is not a square matrix is called a..........matrix.

    Text Solution

    |

  10. Matrix multiplication is distributive over matrix addition

    Text Solution

    |

  11. If A is a symmetric matrix , then A^(3) is a ........ Matrix.

    Text Solution

    |

  12. If A is a skew-symmetric matrix, then A^(2) is a .................

    Text Solution

    |

  13. If A and B are square matrices of the same order, then (i) (AB)=.......

    Text Solution

    |

  14. If A is a skew-symmetric, then kA is a...........(where, k is any scal...

    Text Solution

    |

  15. If A and B are symmetric matrices, then (i) AB-BA is a .......... ...

    Text Solution

    |

  16. If A is symmetric matrix, then B'AB is............

    Text Solution

    |

  17. If A and B are symmetric matrices of same order, then AB is symmetric ...

    Text Solution

    |

  18. In applying one or more row operations while finding A^(-1) by elemen...

    Text Solution

    |

  19. A matrix denotes a number

    Text Solution

    |

  20. Matrices of any order can be added.

    Text Solution

    |