Home
Class 10
MATHS
Solve the equation : (a)/(x-b)+(b)/(x-...

Solve the equation :
`(a)/(x-b)+(b)/(x-a)=2" "(xneb,a)`

A

`x = a-b and x= (a-b) / (2)`

B

`x = a-b and x= (a+b) / (2)`

C

`x = a+b and x= (a-b) / (2)`

D

`x = a+b and x= (a+b) / (2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \frac{a}{x-b} + \frac{b}{x-a} = 2 \] where \( x \neq a \) and \( x \neq b \), we can follow these steps: ### Step 1: Find a common denominator The common denominator for the left side of the equation is \((x-b)(x-a)\). We can rewrite the equation as: \[ \frac{a(x-a) + b(x-b)}{(x-b)(x-a)} = 2 \] ### Step 2: Multiply both sides by the common denominator Multiplying both sides by \((x-b)(x-a)\) gives: \[ a(x-a) + b(x-b) = 2(x-b)(x-a) \] ### Step 3: Expand both sides Now, we will expand both sides: Left side: \[ a(x-a) + b(x-b) = ax - a^2 + bx - b^2 = (a+b)x - (a^2 + b^2) \] Right side: \[ 2(x-b)(x-a) = 2(x^2 - (a+b)x + ab) = 2x^2 - 2(a+b)x + 2ab \] ### Step 4: Set the equation to zero Now we can set the equation to zero by moving all terms to one side: \[ (a+b)x - (a^2 + b^2) - (2x^2 - 2(a+b)x + 2ab) = 0 \] This simplifies to: \[ -a^2 - b^2 + 2ab + (a+b)x - 2x^2 + 2(a+b)x = 0 \] Combining like terms gives: \[ -2x^2 + (3(a+b))x + (2ab - a^2 - b^2) = 0 \] ### Step 5: Rearranging the equation Rearranging gives us: \[ 2x^2 - 3(a+b)x + (a^2 + b^2 - 2ab) = 0 \] ### Step 6: Use the quadratic formula Now we can apply the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \) where \( a = 2 \), \( b = -3(a+b) \), and \( c = a^2 + b^2 - 2ab \): \[ x = \frac{3(a+b) \pm \sqrt{(-3(a+b))^2 - 4 \cdot 2 \cdot (a^2 + b^2 - 2ab)}}{2 \cdot 2} \] ### Step 7: Simplifying the discriminant Calculating the discriminant: \[ (-3(a+b))^2 = 9(a+b)^2 \] \[ 4 \cdot 2 \cdot (a^2 + b^2 - 2ab) = 8(a^2 + b^2 - 2ab) = 8((a-b)^2) \] So the discriminant simplifies to: \[ 9(a+b)^2 - 8(a-b)^2 \] ### Step 8: Final solution Substituting back into the quadratic formula gives us the two possible solutions for \( x \): 1. \( x = \frac{3(a+b) + \sqrt{9(a+b)^2 - 8(a-b)^2}}{4} \) 2. \( x = \frac{3(a+b) - \sqrt{9(a+b)^2 - 8(a-b)^2}}{4} \)

To solve the equation \[ \frac{a}{x-b} + \frac{b}{x-a} = 2 \] where \( x \neq a \) and \( x \neq b \), we can follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • QUADRATIC EQUATIONS

    NAGEEN PRAKASHAN|Exercise Problems From NCERT /exemplar|17 Videos
  • QUADRATIC EQUATIONS

    NAGEEN PRAKASHAN|Exercise Exercise 4a|37 Videos
  • PROBABILITY

    NAGEEN PRAKASHAN|Exercise Revision Exercise Very Short Answer/short Answer Questions|16 Videos
  • REAL NUMBERS

    NAGEEN PRAKASHAN|Exercise Revision Exercise Long Answer Questions|5 Videos

Similar Questions

Explore conceptually related problems

Solve each of the following quadratic equations: (a)/((x-b))+(b)/((x-a))=2,xneb,a

Solve the equation, (x - ab)/(a + b) + (x - bc)/(b + c) + (x - ca)/(c + a)= a + b + c . What happens if 1/(a + b) + 1/( b + c) + 1/(c + a) = 0

Solve by factorization: (a)/(x-a)+(b)/(x-b)=(2c)/(x-c)

Solve the equation: cos^(-1)((a)/(x))-cos^(-1)((b)/(x))=cos^(-1)((1)/(b))-cos^(-1)((1)/(a))

Solve the equation (x-a)^((1)/(2))(x-b)^((1)/(2))-(x-c)^((1)/(2))(x-d)^((1)/(2))=(a-c)^((1)/(2))(b-d)^((1)/(2))

Solve for x (in terms of a and b) : (a)/(x-b)+(b)/(x-a)=2;backslash x!=a,b

Solve the following pair of equations: (x)/(a)+ (y)/(b)= a +b, (x)/(a^(2)) + (y)/(b^(2))=2, a, b ne 0

Solve the system of equations: x^(y)=y^(x)a^(x)=b^(y)

Solve: (x+b)/(a-b)=(x-b)/(a+b)

Solve the following system of equations : (2x)/(a)+(y)/(b)=2, (x)/(a)-(y)/(b)=4: