Home
Class 10
MATHS
Solve 9x^(2)-9(a+b)x+5ab+2b^(2)=0....

Solve `9x^(2)-9(a+b)x+5ab+2b^(2)=0`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the quadratic equation \( 9x^2 - 9(a+b)x + (5ab + 2b^2) = 0 \), we will use the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] ### Step 1: Identify coefficients In the given quadratic equation, we can identify the coefficients as follows: - \( a = 9 \) - \( b = -9(a+b) \) - \( c = 5ab + 2b^2 \) ### Step 2: Substitute coefficients into the quadratic formula Now, we substitute these coefficients into the quadratic formula: \[ x = \frac{-(-9(a+b)) \pm \sqrt{(-9(a+b))^2 - 4 \cdot 9 \cdot (5ab + 2b^2)}}{2 \cdot 9} \] ### Step 3: Simplify the expression First, simplify \( -(-9(a+b)) \): \[ x = \frac{9(a+b) \pm \sqrt{(9(a+b))^2 - 36(5ab + 2b^2)}}{18} \] Next, calculate \( (9(a+b))^2 \): \[ (9(a+b))^2 = 81(a+b)^2 \] Now, simplify \( 36(5ab + 2b^2) \): \[ 36(5ab + 2b^2) = 180ab + 72b^2 \] ### Step 4: Combine under the square root Now we can combine these results: \[ x = \frac{9(a+b) \pm \sqrt{81(a+b)^2 - (180ab + 72b^2)}}{18} \] ### Step 5: Further simplify the expression under the square root Now, we need to simplify \( 81(a+b)^2 - (180ab + 72b^2) \): Expanding \( 81(a+b)^2 \): \[ 81(a+b)^2 = 81(a^2 + 2ab + b^2) \] So we have: \[ 81a^2 + 162ab + 81b^2 - 180ab - 72b^2 = 81a^2 - 18ab + 9b^2 \] ### Step 6: Substitute back into the equation Now, substituting back, we have: \[ x = \frac{9(a+b) \pm \sqrt{81a^2 - 18ab + 9b^2}}{18} \] ### Step 7: Factor out common terms Notice that \( \sqrt{81a^2 - 18ab + 9b^2} = \sqrt{(9a - 3b)^2} = 9a - 3b \): Thus, we can write: \[ x = \frac{9(a+b) \pm (9a - 3b)}{18} \] ### Step 8: Solve for the two possible values of \( x \) Now we can solve for the two cases: 1. **Case 1**: \( x = \frac{9(a+b) + (9a - 3b)}{18} \) \[ = \frac{18a + 6b}{18} = a + \frac{b}{3} \] 2. **Case 2**: \( x = \frac{9(a+b) - (9a - 3b)}{18} \) \[ = \frac{12b}{18} = \frac{2b}{3} \] ### Final Solution Thus, the solutions for the quadratic equation are: \[ x = a + \frac{b}{3} \quad \text{and} \quad x = \frac{2b}{3} \]
Promotional Banner

Topper's Solved these Questions

  • QUADRATIC EQUATIONS

    NAGEEN PRAKASHAN|Exercise Revision Exercise Long Answer Questions|6 Videos
  • QUADRATIC EQUATIONS

    NAGEEN PRAKASHAN|Exercise Revision Exercise Very Short Answer Questions|15 Videos
  • PROBABILITY

    NAGEEN PRAKASHAN|Exercise Revision Exercise Very Short Answer/short Answer Questions|16 Videos
  • REAL NUMBERS

    NAGEEN PRAKASHAN|Exercise Revision Exercise Long Answer Questions|5 Videos

Similar Questions

Explore conceptually related problems

Solve 9x^(2)-12x +25=0

Using quadratic formula solve the following quadratic equations: p^(2)x^(2)+(p^(2)-q^(2))x-q^(2)=0,p!=09x^(2)-9(a+b)x+(2a^(2)+5ab+2b^(2))=0

Solve for x : 9x^2-9(a+b)x+(2a^2+5ab+2b^2)=0

Solve (x+9) (x^(2) +5) .

5.Solve 12abx^(2)-9a^(2)x+8b^(2)x-6ab=0

Solve 9x+5=4(x-2)+8

Solve 9x^(2) + 12 x + 4 le 0

Solve the following equation by using factorisation method: 9x^(2)-6b^(2)x-(a^(4)-b^(4))=0.

If ab+bc+ca=0, then solve a(b-2c)x^(2)+b(c-2a)x+c(a-2b)=0