Home
Class 10
MATHS
Solve x^(2)-(sqrt3+1)x+sqrt3=0....

Solve `x^(2)-(sqrt3+1)x+sqrt3=0`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the quadratic equation \( x^2 - (\sqrt{3} + 1)x + \sqrt{3} = 0 \), we will follow these steps: ### Step 1: Identify the coefficients The given quadratic equation is in the standard form \( ax^2 + bx + c = 0 \). Here, we identify: - \( a = 1 \) - \( b = -(\sqrt{3} + 1) \) - \( c = \sqrt{3} \) ### Step 2: Use the quadratic formula The quadratic formula to find the roots of the equation \( ax^2 + bx + c = 0 \) is given by: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Substituting the values of \( a \), \( b \), and \( c \): \[ x = \frac{-(-(\sqrt{3} + 1)) \pm \sqrt{(-(\sqrt{3} + 1))^2 - 4 \cdot 1 \cdot \sqrt{3}}}{2 \cdot 1} \] ### Step 3: Simplify the expression First, simplify \( -b \): \[ -b = \sqrt{3} + 1 \] Now calculate \( b^2 - 4ac \): \[ b^2 = (-(\sqrt{3} + 1))^2 = (\sqrt{3} + 1)^2 = 3 + 2\sqrt{3} + 1 = 4 + 2\sqrt{3} \] Now calculate \( 4ac \): \[ 4ac = 4 \cdot 1 \cdot \sqrt{3} = 4\sqrt{3} \] Now substitute these into the discriminant: \[ b^2 - 4ac = (4 + 2\sqrt{3}) - 4\sqrt{3} = 4 - 2\sqrt{3} \] ### Step 4: Substitute back into the quadratic formula Now we have: \[ x = \frac{\sqrt{3} + 1 \pm \sqrt{4 - 2\sqrt{3}}}{2} \] ### Step 5: Simplify the square root To simplify \( \sqrt{4 - 2\sqrt{3}} \), we can express it in a simpler form. Let’s assume: \[ \sqrt{4 - 2\sqrt{3}} = \sqrt{a} - \sqrt{b} \] Squaring both sides gives: \[ 4 - 2\sqrt{3} = a + b - 2\sqrt{ab} \] From this, we can equate: 1. \( a + b = 4 \) 2. \( -2\sqrt{ab} = -2\sqrt{3} \Rightarrow \sqrt{ab} = \sqrt{3} \Rightarrow ab = 3 \) Solving these two equations: Let \( a \) and \( b \) be the roots of the equation \( t^2 - 4t + 3 = 0 \): \[ t = \frac{4 \pm \sqrt{(4)^2 - 4 \cdot 1 \cdot 3}}{2 \cdot 1} = \frac{4 \pm \sqrt{4}}{2} = \frac{4 \pm 2}{2} \] This gives us \( t = 3 \) or \( t = 1 \). Therefore, \( a = 3 \) and \( b = 1 \). Thus, we have: \[ \sqrt{4 - 2\sqrt{3}} = \sqrt{3} - 1 \] ### Step 6: Substitute back into the quadratic formula Now substitute back: \[ x = \frac{\sqrt{3} + 1 \pm (\sqrt{3} - 1)}{2} \] This gives us two cases: 1. \( x = \frac{(\sqrt{3} + 1) + (\sqrt{3} - 1)}{2} = \frac{2\sqrt{3}}{2} = \sqrt{3} \) 2. \( x = \frac{(\sqrt{3} + 1) - (\sqrt{3} - 1)}{2} = \frac{2}{2} = 1 \) ### Final Solution The solutions to the equation \( x^2 - (\sqrt{3} + 1)x + \sqrt{3} = 0 \) are: \[ x = \sqrt{3} \quad \text{and} \quad x = 1 \]
Promotional Banner

Topper's Solved these Questions

  • QUADRATIC EQUATIONS

    NAGEEN PRAKASHAN|Exercise Revision Exercise Long Answer Questions|6 Videos
  • QUADRATIC EQUATIONS

    NAGEEN PRAKASHAN|Exercise Revision Exercise Very Short Answer Questions|15 Videos
  • PROBABILITY

    NAGEEN PRAKASHAN|Exercise Revision Exercise Very Short Answer/short Answer Questions|16 Videos
  • REAL NUMBERS

    NAGEEN PRAKASHAN|Exercise Revision Exercise Long Answer Questions|5 Videos

Similar Questions

Explore conceptually related problems

Solve: x^(2)-(sqrt(3)+1)x+sqrt(3)=0

Solve by factorization: x^(2)-(sqrt(3)+1)x+sqrt(3)=0

Solve the equation x^(2)-(sqrt(3)+1)x+sqrt(3)=0 by the method of completing the square.

Solve the equation x^(2)-(sqrt(3)+1)x+sqrt(3)=0 by the method of completing the square.

Solve each of the following quadratic equations: x^(2)-(sqrt(3)+1)x+sqrt(3)=0

Solve: 2x^(2)-sqrt(3) x + 1 = 0

x^2 - (sqrt 3 + 1) x + sqrt 3 = 0

x^(2)-(sqrt(3)+1)x+sqrt(3)=0 2x^(2)+x-4=0

Solve 4sqrt3x^(2)+5x-2sqrt3=0 .

Solve tan^2 x-(1+sqrt3)tan x+sqrt3=0