Home
Class 11
MATHS
lim(n->oo) (1.n+2(n-1)+3(n-2)+....+n.1)/...

`lim_(n->oo) (1.n+2(n-1)+3(n-2)+....+n.1)/(1^2+2^2+3^2+...+n^2)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(n -> oo)(1.n+2.(n-1)+3.(n-2)+...+n.1)/(1^2+2^2+...+n^2)

The value of lim_(n -> oo)(1.n+2.(n-1)+3.(n-2)+...+n.1)/(1^2+2^2+...+n^2)

The value of lim_(n -> oo)(1.n+2.(n-1)+3.(n-2)+...+n.1)/(1^2+2^2+...+n^2)

underset n rarr oo n has the value: Lim_ (n rarr oo) (1 * n + 2 (n-1) +3 (n-2) + ...... + n.1) / (1 ^ ( 2) + 2 ^ (2) + 3 ^ (2) + ...... + n ^ (2))

lim_(n->oo) (1.2+2.3+3.4+....+n(n+1))/n^3

lim_ (n rarr oo) [(1 * n + 2 (n-1) + ... + n * 1) / (1 ^ (3) + 2 ^ (3) + ... + n ^ (3) ) +1] ^ (n)

lim_(n->oo)(1/(n^2+1)+2/(n^2+2)+3/(n^2+3)+....n/(n^2+n))

lim_(n->oo)(1/(n^2+1)+2/(n^2+2)+3/(n^2+3)+....n/(n^2+n))

lim_(n->oo)[(1+1/n^2)(1+2^2 /n^2)(1+3^2 /n^2)......(1+n^2 / n^2)]^(1/n)

lim_ (n rarr oo) (1 + 2 + 3 + ...... + n) / (n ^ (2))