Home
Class 10
MATHS
If sectheta+tantheta=p , prove that sint...

If `sectheta+tantheta=p ,` prove that `sintheta=(p^2-1)/(p^2+1)`

Text Solution

Verified by Experts

L.H.S.`=(p^(2)-1)/(p^(2)+1)=((sectheta+tantheta)^(2)-1)/((sectheta+tantheta)^(2)+1)=(sec^(2)theta+tan^(2)theta+2secthetatantheta-1)/(sec^(2)theta+tan^(2)theta+2secthetatantheta+1)`
`=((sec^(2)theta-1)+tan^(2)theta+2secthetatantheta)/(sec^(2)theta+(tan^(2)theta+1)+2secthetatantheta)=(tan^(2)theta+tan^(2)theta+2secthetatantheta)/(sec^(2)theta+sec^(2)theta+2secthetatantheta)`
`=(2tan^(2)theta+2secthetatantheta)/(2sec^(2)theta+2secthetatantheta)=(2tantheta(tantheta+sectheta))/(2sectheta(sectheta+tantheta))=(tantheta)/(sectheta)=(sintheta)/(costheta)=(costheta)/(1)`
`=sintheta=R.H.S.`
Alternative Method : we have `sectheta+tantheta=p`
`rArr(1)/(costheta)+(sintheta)/(costheta)=(p)/(1)rArr(1+sintheta)/(costheta)=(p)/(1)`
Squaring both sides, we get
`((1+sin theta)^(2))/(cos^(2)theta)=(p^(2))/(1)`
`rArr((1+sin theta)^(2))/(1-sin^(2)theta)=(p^(2))/(1)` (using indentity `sin^(2)theta+cos^(2)theta=1`)
`rArr((1+sintheta)^(2))/((1+sintheta)(1-sintheta))=(p^(2))/(1)rArr(1+sintheta)/(1=sintheta)=(p^(2))/(1)`
Applying componedo and dividendo ,we get
`(2)/(2sintheta)=(p^(2)+1)/(p^(2)-1)`
`rArr(2)/(sintheta)=(p^(2)+1)/(p^(2)-1)rArrsintheta=(p^(2)-1)/(p^(2)+1)`
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN|Exercise Problems From NCERT/exemplar|29 Videos
  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN|Exercise Exercise 8a|20 Videos
  • CONSTRUCTIONS

    NAGEEN PRAKASHAN|Exercise PROBLEMS FROM NCERT/ EXEMPLAR|10 Videos
  • LINEAR EQUATIONS IN TWO VARIABLES

    NAGEEN PRAKASHAN|Exercise Revision Exercise Long Answer Questions|8 Videos

Similar Questions

Explore conceptually related problems

If sec theta+tan theta=p, prove that sin theta=(p^(2)-1)/(p^(2)+1)

If sec theta + tan theta = p , prove that (i) sec theta =(1)/(2)(p+(1)/(p)) " (ii) "tan theta =(1)/(2)(p-(1)/(p)) " (iii) " sin theta =(p^(2)-1)/(p^(2)+1).

If cos ec theta+cot theta=p, then prove that cos theta=(p^(2)-1)/(p^(2)+1)

If cosectheta + cottheta=p , then prove that the cos theta=(p^2-1)/(p^2+1)

If sectheta+tantheta=5 , then find sintheta=?

If sectheta+tantheta=p , then sectheta=?

If sin theta+tan theta=P then prove that (p^(2)-1)/(p^(2)+1)=sin theta

sqrt(2)sectheta+tantheta=1

If sintheta=x and sectheta=y , then tantheta=?

If sectheta+tantheta=2 , then the value of sectheta is